Theoretical Competition 25 April 2010

Student Code
\square

Question Number 2

Page No. \square Total No. \square

ANSWER SHEET

Theoretical Question 2 Strong Resistive Electromagnets

Do not write in any box marked with a solidus (oblique stroke, /).

Part A. Magnetic fields on the axis of the coil

(a) x-component $B(x)$ of the magnetic field on the axis (in terms of a, D, I, ℓ, μ_{0}).

Expression of $B(x)=$							
1.0 pt	1	1	1	1	1	1	1

(b) The current I_{0} when $B(0)=10.0 \mathrm{~T}$ (expressed in terms of $\left.a, D, B(0), \ell, \mu_{0}\right)$.

Expression of $I_{0}=$ Value of $I_{0}=$							
0.4 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

Part B. The upper limit of current
(c) The outward normal force per unit length $\Delta F_{\mathrm{n}} / \Delta s$ (in terms of $a, D^{\prime}, I, \mu_{0}$).

Expression of $\frac{\Delta F_{\mathrm{n}}}{\Delta s}=$							
1.2 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

The tension F_{t} along the wire (in terms of $a, D^{\prime}, I, \mu_{0}$).

Expression of $F_{\mathrm{t}}=$							
0.6 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

Theoretical Competition 25 April 2010

Student Code

Page No. \square Total No. \square

ANSWER SHEET
(d) The current I_{b} at which the turn will break (expressed in terms of $a, b, D, \sigma_{\mathrm{b}}, \mu_{0}$).

Expression of $I_{\mathrm{b}}=$ Value of $I_{\mathrm{b}}=$						
0.8 pt	$/$	$/$	$/$	$/$	$/$	

The magnetic field B_{b} at O when the current is I_{b} (expressed in terms of $a, I_{\mathrm{b}}, \mu_{0}$).

Expression of $B_{\mathrm{b}}=$ Value of $B_{\mathrm{b}}=$							
0.4 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

Part C. Rate of temperature rise

(e) The power density of heat generation in the coil.

Expression: Value:							
0.5 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

(f) The time rate of change \dot{T} of temperature in the coil.

Expression of $\dot{T}=$							
Value of $\dot{T}=$							
0.5 pt	/	/	1	/	1	1	1

Page No. \square Total No.

ANSWER SHEET

Part D. A pulsed-field magnet

(g) Expressions for the inductance L and resistance R.

Expression of $L=$ Expression of $R=$							
0.6 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

Values of inductance L and resistance R.

Value of $L=$ Value of $R=$							
0.4 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

(h) Expressions for α and ω (in terms of R, L, and C).

Expression of $\alpha=$ Expression of $\omega=$							
0.8 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

Values of α and ω.

Value of $\alpha=$ Value of $\omega=$							
0.4 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

Theoretical Competition
25 April 2010
Student Code

Question Number 2

Page No. \square Total No.

ANSWER SHEET
(i) Expression of I_{m} (in terms of $\alpha, \omega, \theta_{0}, V_{0}$ and C).

Expression of $I_{\mathrm{m}}=$							
0.6 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

Maximum initial voltage $V_{0 \mathrm{~b}}$ for which I_{m} will not exceed I_{b} of Problem (d).

Value of $V_{0 \mathrm{~b}}=$							
0.4 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

(j) The total amount of heat ΔE dissipated in the coil (in terms of $\alpha, \omega, \theta_{0}, V_{0 \mathrm{~b}}$ and C).

Expression of $\Delta E=$ Value of $\Delta E=$							
1.0 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

The temperature increase ΔT of the coil.

$\|$Expression of $\Delta T=$ Value of $\Delta T=$
0.4 pt

