Theoretical Competition 25 April 2010

Student Code

Page No.

Total No.

Theoretical Competition 25 April 2010

Student Code

Page No.

Total No.

ANSWER SHEET

		Part 1	D. A pulse	ed-field m	agnet		
g) Expressio	ons for the i	inductance	L and resist	ance R.			
Expression	n of $L =$						
Expression	n of $R =$						
0.6 pt	/	/	/	/	/	/	/
Values of in	nductance I	and resista	ance R.				
Value of <i>I</i>	2 =						
Value of <i>I</i>	? =						
0.4 pt	/	/	/	/	/	/	/
h) Expressio	ons for α and	d ω (in terr	ns of R, L,	and <i>C</i>).			
Expression	n of $\alpha =$						
Expression	n of $\omega =$						
0.8 pt	/	/	/	/	/	/	/
Values of α	z and ω .						
Value of a	α =						
Value of a	υ =						
0.4 pt	/	/	/	/	/	/	/

Theoretical Competition 25 April 2010

Student Code

Page No.

Total No.

ANSWER SHEET

Expression of $I_{\rm m} =$ 0.6 pt / / / / / / / / / / Maximum initial voltage V_{0b} for which $I_{\rm m}$ will not exceed $I_{\rm b}$ of Problem (d). Value of $V_{0b} =$ 0.4 pt / / / / / / / / / / / / / / / / / /	/
0.6 pt / / / / / / Maximum initial voltage V_{0b} for which I_m will not exceed I_b of Problem (d). Value of $V_{0b} =$ 0.4 pt / / / / (j) The total amount of heat ΔE dissipated in the coil (in terms of α , ω , θ_0 , V_{0b} and C Expression of $\Delta E =$ Value of $\Delta E =$ 1.0 pt / / / / The temperature increase ΔT of the coil.	/
Maximum initial voltage V_{0b} for which I_m will not exceed I_b of Problem (d). Value of $V_{0b} =$ 0.4 pt / / / / (j) The total amount of heat ΔE dissipated in the coil (in terms of α , ω , θ_0 , V_{0b} and C Expression of $\Delta E =$ Value of $\Delta E =$ 1.0 pt / / / / The temperature increase ΔT of the coil.	/
Value of $V_{0b} =$ 0.4 pt / / / / / (j) The total amount of heat ΔE dissipated in the coil (in terms of α , ω , θ_0 , V_{0b} and C Expression of $\Delta E =$ Value of $\Delta E =$ 1.0 pt / / / / / The temperature increase ΔT of the coil.	/
0.4 pt / / / / / / (j) The total amount of heat ΔE dissipated in the coil (in terms of α , ω , θ_0 , V_{0b} and α Expression of ΔE = Value of ΔE = 1.0 pt / / / / The temperature increase ΔT of the coil.	/
(j) The total amount of heat ΔE dissipated in the coil (in terms of α , ω , θ_0 , V_{0b} and C Expression of $\Delta E =$ Value of $\Delta E =$ 1.0 pt / / / / / / / / / The temperature increase ΔT of the coil.	
Expression of $\Delta E =$ Value of $\Delta E =$ 1.0 pt / / / / The temperature increase ΔT of the coil.	2).
Value of $\Delta E =$ 1.0 pt / / / / The temperature increase ΔT of the coil.	
1.0 pt / / / / The temperature increase ΔT of the coil.	
The temperature increase ΔT of the coil.	/
Expression of $\Delta I =$	
Value of $\Delta T =$	
0.4 pt / / / / / /	/