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Question Number 2 

Theoretical Question 2:  Strong Resistive Electromagnets 

SOLUTION 
Part A. Magnetic Fields on the Axis of the Coil 

(a) At the point 𝑥𝑥 on the axis, the magnetic field due to the current 𝐼𝐼 passing through the turns 
located in the interval (𝑠𝑠, 𝑠𝑠 + 𝑑𝑑𝑠𝑠) is (see Fig. A1) 

𝑑𝑑𝐵𝐵�⃗ = (
𝜇𝜇0

4𝜋𝜋
)

𝐼𝐼(𝜋𝜋𝜋𝜋)
(𝜋𝜋/2)2 + (𝑠𝑠 − 𝑥𝑥)2 ∙

(𝜋𝜋/2)
�(𝜋𝜋/2)2 + (𝑠𝑠 − 𝑥𝑥)2

∙
𝑑𝑑𝑠𝑠
𝑎𝑎
𝑥𝑥�                     (a-1) 

which, when summed over all turns of the coil, leads to the total magnetic field  𝐵𝐵�⃗ (𝑥𝑥) =
𝐵𝐵(𝑥𝑥)𝑥𝑥 �  with 

𝐵𝐵(𝑥𝑥) =
𝜇𝜇0𝐼𝐼
2𝑎𝑎

 (
𝜋𝜋
2

)2 �
𝑑𝑑𝑠𝑠

[(𝜋𝜋/2)2 + (𝑠𝑠 − 𝑥𝑥)2]3/2 

ℓ/2

−ℓ/2

                                                                      

=  
𝜇𝜇0𝐼𝐼
2𝑎𝑎

 ( 
𝜋𝜋
2

)2 �
𝑑𝑑𝑠𝑠

[(𝜋𝜋/2)2 + 𝑠𝑠2]3/2

ℓ/2−𝑥𝑥

−ℓ/2−𝑥𝑥

                                                                            

=
𝜇𝜇0𝐼𝐼
2𝑎𝑎

�
(ℓ/2) − 𝑥𝑥

�(𝜋𝜋/2)2 + [(ℓ/2) − 𝑥𝑥]2
+

(ℓ/2) + 𝑥𝑥
�(𝜋𝜋/2)2 + [(ℓ/2) + 𝑥𝑥]2

�                 (a-2)* 

 
 
 
 
 
 
 
 
(b) From Eq. (a-2), the magnetic field at  O wth 𝑥𝑥 = 0 is 

𝐵𝐵(0) =
𝜇𝜇0𝐼𝐼
2𝑎𝑎

2(ℓ/2)
�(𝜋𝜋/2)2 + (ℓ/2)2

=
𝜇𝜇0𝐼𝐼
𝑎𝑎

1
�1 + (𝜋𝜋/ℓ)2

                          (b-1) 

If 𝐵𝐵(0) is 10.0 T, then the current 𝐼𝐼 must be equal to 

𝐼𝐼0 = 𝐵𝐵(0)
𝑎𝑎
𝜇𝜇0
�1 + (𝜋𝜋/ℓ)2 = 1.7794 × 104 A ≅ 1.8 × 104 A            (b-2)* 

---------------------------------------------------------------------------------------------------------------- 
*An equation marked with an asterisk gives key answers to the problem. 

Figure A1 𝑂𝑂 𝑥𝑥 𝑥𝑥 𝑠𝑠 𝑠𝑠 + 𝑑𝑑𝑠𝑠 

1
2 𝜋𝜋 

1
2 𝜋𝜋 

no. of turns in 𝑑𝑑𝑠𝑠 is 𝑑𝑑𝑠𝑠/𝑎𝑎 

𝐼𝐼 
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Question Number 2 

Part B. The Upper Limit of Current 

(c) For an infinitely long coil with  ℓ → ∞ and 𝑏𝑏 ≪ 𝜋𝜋, the magnetic field  𝐵𝐵�⃗   acting on the 
current is the average of the fields inside and outside of the coil. The field outside is zero 
and the field inside is the same as that at O, i.e. 𝐵𝐵(0) in Eq. (b-1) with  ℓ → ∞. Thus we 
have 

𝐵𝐵�⃗ = 𝐵𝐵�𝑥𝑥� =
1
2

(0 +
𝜇𝜇0𝐼𝐼
𝑎𝑎

)𝑥𝑥� =
𝜇𝜇0𝐼𝐼
2𝑎𝑎

𝑥𝑥�,                                                   (c-1) 

and the outward normal force on the wire segment of length ∆𝑠𝑠 is 

∆𝐹𝐹n = 𝐼𝐼𝐵𝐵�∆𝑠𝑠 = 𝐼𝐼∆𝑠𝑠 �
𝜇𝜇0𝐼𝐼
2𝑎𝑎

�     or      
∆𝐹𝐹n

∆𝑠𝑠
=
𝜇𝜇0

2𝑎𝑎
𝐼𝐼2.                       (c-2)* 

As can be seen from Fig. A2, the resultant of the pair of tension forces at the ends of the 
segment ∆𝑠𝑠

 
is given by 

−2𝐹𝐹t  sin  (
∆𝜃𝜃
2

) ≅ −𝐹𝐹t  ∆𝜃𝜃 = −𝐹𝐹t  �
2∆𝑠𝑠
𝜋𝜋′

� .                                      (c-3) 

This must be in equilibrium with the normal force ∆𝐹𝐹n  so that, by using Eq. (c-2), we have 

∆𝐹𝐹n = 𝐹𝐹t �
2∆𝑠𝑠
𝜋𝜋′

�   or   𝐹𝐹t =
𝜋𝜋′
2
�
∆𝐹𝐹n

∆𝑠𝑠
� =

𝜇𝜇0

4𝑎𝑎
𝐼𝐼2𝜋𝜋′ .                        (c-4)* 

 
 
 
 
 
 
 
 

(d) At breaking, the tensile stress of the wire is, from Eq. (c-4), 
𝐹𝐹t

𝑎𝑎𝑏𝑏
=

𝜇𝜇0

4𝑎𝑎2𝑏𝑏
𝐼𝐼b 2𝜋𝜋′ = 𝜎𝜎b = 4.55 × 108 Pa ,                                   (d-1) 

and the tensile strain of the wire is 
𝜋𝜋(𝜋𝜋′ − 𝜋𝜋)

𝜋𝜋𝜋𝜋
=

(𝜋𝜋′ − 𝜋𝜋)
𝜋𝜋

 = 60 %  or   𝜋𝜋′ = 1.60 𝜋𝜋.                     (d-2) 

From the last two equations, the current 𝐼𝐼b  at which the turn will break is 

𝐼𝐼b = 2𝑎𝑎�
𝑏𝑏𝜎𝜎b

𝜇𝜇0𝜋𝜋′
= 2𝑎𝑎�

𝑏𝑏𝜎𝜎b

𝜇𝜇0(1.60 𝜋𝜋)
 = 1.737 × 104 A ≅ 1.7 × 104 A,          (d-3) 

and the magnitude of the magnetic field at the center O, i.e. Eq. (b-1) with  ℓ → ∞, is 

𝐵𝐵b =
𝜇𝜇0𝐼𝐼b
𝑎𝑎

= 2�
𝜇𝜇0𝑏𝑏𝜎𝜎b

𝜋𝜋′
= 10.914 T = 1.1 × 101 T,                            (d-4)* 

Figure A2 

𝑥𝑥 

∆𝑠𝑠 

1
2𝜋𝜋′ 

∆𝜃𝜃  

𝐼𝐼 𝑏𝑏 

∆𝐹𝐹n  

𝐹𝐹t  𝐹𝐹t  
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Question Number 2 

Part C. Rate of Temperature Rise 
(e) When the current 𝐼𝐼 is 10.0 kA, the current density  𝐽𝐽  is given by 

𝐽𝐽 =
𝐼𝐼
𝑎𝑎𝑏𝑏

=
1.00 × 104

(2.0 × 10−3)(5.0 × 10−3)
= 1.0 × 109 A/m2.              (e-1) 

The power density is given by 

𝜌𝜌e 𝐽𝐽2 = 𝜌𝜌e �
𝐼𝐼
𝑎𝑎𝑏𝑏
�

2

= 1.720 × 1010 W/m3 ≅ 1.7 × 1010 W/m3.        (e-2)* 

 (ALTERNATIVE) 
The volume 𝜏𝜏 and resistance 𝑅𝑅 (appearing also in Problem (h)) of the current-carrying 
wire for a coil of length ℓ are given by 

𝜏𝜏 = 𝜋𝜋 ��
𝜋𝜋 + 𝑏𝑏

2
�

2

− �
𝜋𝜋 − 𝑏𝑏

2
�

2

� ℓ = 𝜋𝜋𝑏𝑏𝜋𝜋ℓ = 𝑁𝑁𝜋𝜋𝑎𝑎𝑏𝑏𝜋𝜋,                     (e-3) 

𝑅𝑅 = 𝜌𝜌e
𝑁𝑁𝜋𝜋𝜋𝜋
𝑎𝑎𝑏𝑏

= 𝜌𝜌e
𝜋𝜋𝜋𝜋ℓ
𝑎𝑎2𝑏𝑏

= 1.9453 × 10−2 Ω ≅ 1.9 × 10−2 Ω.        (e-4) 

The total power 𝑃𝑃 of Joule heat generated in the coil is 
𝑃𝑃 = 𝐼𝐼2𝑅𝑅 = 1.9453 × 106 W = 1.9 × 106 W.                                    (e-5) 

Thus the power density is 
𝑃𝑃
𝜏𝜏

=
𝑃𝑃

𝑁𝑁𝜋𝜋𝑎𝑎𝑏𝑏𝜋𝜋
=

𝑃𝑃
ℓ𝜋𝜋𝑏𝑏𝜋𝜋

= 1.7 × 1010 W/m3.                                     (e-6)* 

Note that, by Eqs. (e-3) to (e-5), the expression for power density may also be written as 

𝑃𝑃
𝜏𝜏

=
𝐼𝐼2𝑅𝑅
𝜏𝜏

=
𝐼𝐼2

ℓ𝜋𝜋𝑏𝑏𝜋𝜋
𝜌𝜌e
𝜋𝜋𝜋𝜋ℓ
𝑎𝑎2𝑏𝑏

= 𝜌𝜌e �
𝐼𝐼
𝑎𝑎𝑏𝑏
�

2

= 𝜌𝜌e𝐽𝐽2.                                 (e-7)* 

This is identical to that obtained in Eq. (e-2). 

(f) The time rate of temperature increase of the coil is 

�̇�𝑇 =
𝜌𝜌e𝐽𝐽2

𝜌𝜌𝑚𝑚𝑐𝑐𝑝𝑝
=

𝜌𝜌e

𝜌𝜌𝑚𝑚𝑐𝑐𝑝𝑝
�
𝐼𝐼
𝑎𝑎𝑏𝑏
�

2

.                                                                        (f-1) 

At  𝑇𝑇 = 293 K
  
and  𝐼𝐼 = 10.0 kA, we have 

�̇�𝑇 =
𝜌𝜌e

𝜌𝜌𝑚𝑚𝑐𝑐𝑝𝑝
�
𝐼𝐼
𝑎𝑎𝑏𝑏
�

2

=
𝜌𝜌e𝐽𝐽2

𝜌𝜌𝑚𝑚𝑐𝑐𝑝𝑝
= 4.975 × 103 K/s ≅ 5.0 × 103 K/s.        (f-2)* 

 (ALTERNATIVE) 
The heat capacity of the coil is 

𝑀𝑀𝑐𝑐𝑝𝑝 = 𝜌𝜌𝑚𝑚 (ℓ𝜋𝜋𝑏𝑏𝜋𝜋)𝑐𝑐𝑝𝑝 = 3.9101 × 102 J/K ≅ 3.9 × 102 J/K.                (f-3) 
From Eqs. (e-5) and (f-3), the time rate of temperature increase is 

�̇�𝑇 =
𝐼𝐼2𝑅𝑅
𝑀𝑀𝑐𝑐𝑝𝑝

= 4.975 × 103 K/s ≅ 5.0 × 103 K/s.                                (f-4)* 
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Question Number 2 

Part D. A Pulsed-Field Magnet 
(g) The magnetic flux 𝜙𝜙𝐵𝐵  through each turn is, in the limit  ℓ → ∞, given by 

𝜙𝜙𝐵𝐵 = { lim
ℓ→∞

𝐵𝐵(0)}𝜋𝜋 �
𝜋𝜋
2
�

2

=
𝜇𝜇0𝐼𝐼
𝑎𝑎
𝜋𝜋 �

𝜋𝜋
2
�

2

.                                                  (g-1) 

The inductance 𝐿𝐿
 
of the coil is 

𝐿𝐿 =
𝑁𝑁𝜙𝜙𝐵𝐵
𝐼𝐼

=
𝑁𝑁𝜇𝜇0

𝑎𝑎
𝜋𝜋 �

𝜋𝜋
2
�

2

=
ℓ𝜇𝜇0

4𝑎𝑎2 𝜋𝜋𝜋𝜋
2 = 1.0659 × 10−4 H ≅ 1.1 × 10−4 H.      (g-2)* 

The resistance 𝑅𝑅
 
of the coil is the same as given in Eq. (e-4). Thus 

𝑅𝑅 = 𝜌𝜌e
𝜋𝜋𝜋𝜋𝑁𝑁
𝑎𝑎𝑏𝑏

= 𝜌𝜌e
𝜋𝜋𝜋𝜋ℓ
𝑎𝑎2𝑏𝑏

= 1.9453 × 10−2 Ω ≅ 1.9 × 10−2 Ω.        (g-3)* 

(h) According to Kirchhoff’s circuit law, the change of electric potential around a closed 
circuit must be zero and we have 

𝐿𝐿
𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

+ 𝑅𝑅𝐼𝐼 +
𝑄𝑄
𝐶𝐶

= 0.                                                            (h-1) 
In this question, we are given 

𝑄𝑄(𝑑𝑑) =
𝐶𝐶𝑉𝑉0

sin 𝜃𝜃0
𝑒𝑒−𝛼𝛼𝑑𝑑 sin(𝜔𝜔𝑑𝑑 + 𝜃𝜃0) = �𝑒𝑒𝛼𝛼(𝜃𝜃0

𝜔𝜔 )�  
𝐶𝐶𝑉𝑉0

sin𝜃𝜃0
𝑒𝑒−𝛼𝛼(𝑑𝑑+𝜃𝜃0

𝜔𝜔 ) sin𝜔𝜔(𝑑𝑑 +
𝜃𝜃0

𝜔𝜔
) ,          (1) 

𝐼𝐼(𝑑𝑑) =
𝑑𝑑𝑄𝑄
𝑑𝑑𝑑𝑑

= �(
−𝛼𝛼

cos𝜃𝜃0
)�

𝐶𝐶𝑉𝑉0

sin𝜃𝜃0
𝑒𝑒−𝛼𝛼𝑑𝑑 sin𝜔𝜔𝑑𝑑 ,                             (2) 

tan𝜃𝜃0 =
𝜔𝜔
𝛼𝛼

.                                                                            (3) 

Comparing the right sides of Eqs. (1) and (2), one sees that the current  𝐼𝐼(𝑑𝑑) = 𝑑𝑑𝑄𝑄/𝑑𝑑𝑑𝑑 is 
obtained from 𝑄𝑄(𝑑𝑑) by changing the latter’s time variable 𝑑𝑑 to (𝑑𝑑 − 𝜃𝜃0/𝜔𝜔) or, equivalently, 
changing (𝑑𝑑 + 𝜃𝜃0/𝜔𝜔) to 𝑑𝑑, and then multiplying its amplitude constant by a factor 

�𝑒𝑒−𝛼𝛼  𝜃𝜃0
𝜔𝜔  (

−𝛼𝛼
cos𝜃𝜃0

)�. 

Since 𝐼𝐼(𝑑𝑑) in Eq. (2) has the same form as 𝑄𝑄(𝑑𝑑) in Eq. (1), we may apply the same rule 
again to obtain its derivative 𝑑𝑑𝐼𝐼/𝑑𝑑𝑑𝑑 as 

𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

= �𝑒𝑒−𝛼𝛼  𝜃𝜃0
𝜔𝜔 (

−𝛼𝛼
cos𝜃𝜃0

)� �(
−𝛼𝛼

cos𝜃𝜃0
)
𝐶𝐶𝑉𝑉0

sin 𝜃𝜃0
� 𝑒𝑒−𝛼𝛼(𝑑𝑑−𝜃𝜃0

𝜔𝜔 ) sin𝜔𝜔(𝑑𝑑 −
𝜃𝜃0

𝜔𝜔
)                     

= (
𝛼𝛼

cos𝜃𝜃0
)2 𝐶𝐶𝑉𝑉0

sin𝜃𝜃0
𝑒𝑒−𝛼𝛼𝑑𝑑 sin(𝜔𝜔𝑑𝑑 − 𝜃𝜃0)                                                    (h-2) 

Making use of Formula 2 given in Appendix, we may express the left side of Eq. (h-1) as a 
linear combination of  cos𝜔𝜔𝑑𝑑 and sin𝜔𝜔𝑑𝑑 so that 

𝐿𝐿
𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

+ 𝑅𝑅𝐼𝐼 +
𝑄𝑄
𝐶𝐶

= �
𝐶𝐶𝑉𝑉0

sin𝜃𝜃0
� 𝑒𝑒−𝛼𝛼𝑑𝑑 (𝐴𝐴 cos 𝜃𝜃0 sin𝜔𝜔𝑑𝑑 + 𝐵𝐵 sin𝜃𝜃0 cos𝜔𝜔𝑑𝑑) = 0,       (h-3) 
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Question Number 2 

which can be satisfied if and only if 

𝐴𝐴 ≡ 𝐿𝐿(
𝛼𝛼

cos𝜃𝜃0
)2 − 𝑅𝑅(

𝛼𝛼
cos2 𝜃𝜃0

) +
1
𝐶𝐶

= 0,                                     (h-4) 

𝐵𝐵 ≡ −𝐿𝐿(
𝛼𝛼

cos𝜃𝜃0
)2 +

1
𝐶𝐶

= 0,                                                           (h-5) 

Note that Eqs. (h-4) and (h-5) may be obtained more simply by considering Eq. (h-1) at 
the moments when sin𝜔𝜔𝑑𝑑 = 1 and 0, respectively. Subtracting Eq. (h-5) from Eq. (h-4), 
we obtain 

𝛼𝛼 =
𝑅𝑅
2𝐿𝐿

,                                                                                             (h-6) 

If we use the expressions given in Eqs. (g-2) and (g-3), we obtain 

𝛼𝛼 =
𝑅𝑅
2𝐿𝐿

=
𝜌𝜌𝑒𝑒
𝜋𝜋𝜋𝜋ℓ
𝑎𝑎2𝑏𝑏

𝜋𝜋𝜋𝜋2 ℓ𝜇𝜇0
2𝑎𝑎2

=
2𝜌𝜌𝑒𝑒
𝜇𝜇0𝑏𝑏𝜋𝜋

= 9.1249 × 101 s−1 ≅ 9.1 × 101 s−1.         (h-7)* 

Adding up Eqs. (h-4) and (h-5), we have, by Eq. (h-6) and Eq. (3), 
1
𝐿𝐿𝐶𝐶

=
𝑅𝑅𝛼𝛼

2𝐿𝐿 cos2 𝜃𝜃0
=

𝛼𝛼2

 cos2 𝜃𝜃0
= 𝛼𝛼2(1 + tan2 𝜃𝜃0) = 𝛼𝛼2 + 𝜔𝜔2.                       (h-8) 

This may be rewritten as 

𝜔𝜔2 = 𝜔𝜔0
2 − 𝛼𝛼2 =

1
𝐿𝐿𝐶𝐶

− (
𝑅𝑅
2𝐿𝐿

)2    with     𝜔𝜔0 =
1

√𝐿𝐿𝐶𝐶
= 9.7 × 102 rad/s,         (h-9)* 

and we obtain 
𝜔𝜔 = �𝜔𝜔0

2 − 𝛼𝛼2 = 9.6428 × 102 rad/s ≅ 9.6 × 102 rad/s.                 (h-10)* 
(i) From Eq. (h-2), the maximum value of  |𝐼𝐼(𝑑𝑑)|  appears at 𝑑𝑑𝐼𝐼/𝑑𝑑𝑑𝑑 = 0 when the time is 

𝑑𝑑m =
𝜃𝜃0

𝜔𝜔
.                                                                                             (i-1) 

From Eq. (2), the maximum value of  |𝐼𝐼(𝑑𝑑)|  is then given by 

𝐼𝐼m = |𝐼𝐼(𝑑𝑑m )| = (
𝛼𝛼

cos𝜃𝜃0
)𝐶𝐶𝑉𝑉0𝑒𝑒

− 𝛼𝛼𝜔𝜔  𝜃𝜃0 .                                          (i-2)* 

From Eqs. (3), (h-7) and (h-10), we have 

tan𝜃𝜃0 =
𝜔𝜔
𝛼𝛼

= 10.568, 𝜃𝜃0 = 1.4764 rad, 𝑑𝑑m =
𝜃𝜃0

𝜔𝜔
= 1.531 × 10−3 s.       (i-3) 

If  𝐼𝐼m  does not exceed 𝐼𝐼b  found in Problem (d), we must have 

𝐼𝐼m = |𝐼𝐼(𝑑𝑑m )| ≤ 𝐼𝐼b   or   (
𝛼𝛼

cos𝜃𝜃0
) 𝐶𝐶 𝑉𝑉0𝑒𝑒

− 𝛼𝛼𝜔𝜔  𝜃𝜃0 ≤ 𝐼𝐼b ,                            (i-4) 

which implies that the maximum value 𝑉𝑉0b  of  𝑉𝑉0  occurs when the equality holds and is 
given by 

𝑉𝑉0b =
𝐼𝐼b
𝛼𝛼𝐶𝐶

𝑒𝑒
𝛼𝛼
𝜔𝜔𝜃𝜃0  cos 𝜃𝜃0 = 2.0623 × 103 V ≅ 2.1 × 103 V.              (i-5)* 
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Question Number 2 

[j] When |𝐼𝐼(𝑑𝑑)|  reaches its maximum at 𝑑𝑑 = 𝑑𝑑m = 𝜃𝜃0/𝜔𝜔, the voltage of the capacitor has 
dropped from the initial voltage 𝑉𝑉0 = 𝑉𝑉0b  to 

𝑉𝑉(𝑑𝑑m ) =
𝑄𝑄(𝑑𝑑m )
𝐶𝐶

=
𝑉𝑉0b

sin𝜃𝜃0
𝑒𝑒− 𝛼𝛼𝜔𝜔  𝜃𝜃0  sin(2𝜃𝜃0) = 2𝑉𝑉0b𝑒𝑒

− 𝛼𝛼𝜔𝜔  𝜃𝜃0 cos 𝜃𝜃0 .       (j-1) 

From 𝑑𝑑 = 0 to 𝑑𝑑 = 𝑑𝑑m , the energy supplied by the capacitor bank to the circuit, in the form 
of Joule heat and magnetic energy in the field of the coil, is 

𝐸𝐸𝐶𝐶 =
1
2
𝐶𝐶�𝑉𝑉0b

2 − [𝑉𝑉(𝑑𝑑m )]2� =
1
2
𝐶𝐶𝑉𝑉0b

2 �1 − 4𝑒𝑒−
2𝛼𝛼
𝜔𝜔 𝜃𝜃0  cos2 𝜃𝜃0� .           (j-2) 

By the law of conservation of energy, this entire amount of energy is eventually turned 
into heat in the coil and we have 

∆𝐸𝐸 = 𝐸𝐸𝐶𝐶 =
1
2
𝐶𝐶𝑉𝑉0b

2 �1 − 4𝑒𝑒− 2𝛼𝛼𝜔𝜔  𝜃𝜃0  cos2 𝜃𝜃0� = 2.0694 × 104 J ≅ 2.1 × 104 J.    (j-3)* 

If the heat capacity (as computed in Eq. (f-3) remains about the same as that at  𝑇𝑇 = 293 K, 
then the temperature increase ∆𝑇𝑇 is 

∆𝑇𝑇 =
∆𝐸𝐸
𝑀𝑀𝑐𝑐𝑝𝑝

=
∆𝐸𝐸

𝜌𝜌𝑚𝑚 (ℓ𝜋𝜋𝑏𝑏𝜋𝜋)𝑐𝑐𝑝𝑝
= 53 K.                                                         (j-4)* 

With such a temperature increase, the thermal and electrical properties of a metal such as 
copper do not change substantially. 
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