

Page No. \square Total No.

ANSWER SHEET

Theoretical Question 3 Electron and Gas Bubbles in Liquids

Do not write in any box marked with a solidus (oblique stroke, /).

Part A. An electron bubble in liquid helium

(a) Relation between $P_{\mathrm{He}}, P_{\mathrm{e}}$, and σ.

0.4 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

Relation between E_{k} and P_{e}.

Expression:

1.0 pt	$/$	$/$	1	$/$	$/$	$/$	1

(b) The smallest possible kinetic energy E_{0} as a function of R.

Expression of $E_{0}=$							
0.8 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

(c) The bubble's equilibrium radius R_{e} when $E_{\mathrm{k}}=E_{0}$ and $P_{\mathrm{He}}=0$.

Expression of $R_{\mathrm{e}}=$							
Value of $R_{\mathrm{e}}=$							
0.6 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

Theoretical Competition 25 April 2010

Student Code

Page No. \square Total No.

ANSWER SHEET
(d) Condition satisfied by R and $P_{\text {He }}$ for locally stable equilibrium at radius R.

Expression:							
0.6 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

(e) The threshold pressure $P_{\text {th }}$ below which no equilibrium is possible for the bubble.

Expression of $P_{\mathrm{th}}=$							
0.6 pt	$/$	$/$	1	$/$	$/$	$/$	1

Part B. Single gas bubble in liquid — collapsing and radiation

(f) Work $d W$ done on the liquid when the bubble's radius changes from R to $R+d R$.

$|$| Expression of $d W=$ | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.4 pt | $/$ | $/$ | $/$ | $/$ | $/$ | $/$ | $/$ |

Values of the exponents m and n .

$\mathrm{m}=$							
$\mathrm{n}=$							
0.4 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

Theoretical Competition 25 April 2010

Student Code

Page No. \square Total No. \square

ANSWER SHEET
(g) Pressure $P \equiv P(R)$ and temperature $T \equiv T(R)$ as a function of R.

Expression of $P \equiv P(R)=$					
Expression of $T \equiv T(R)=$					
0.6 pt	$/$	$/$	$/$	$/$	$/$

(h) The coefficient μ in terms of R_{i} and P_{0}.

Expression of $\mu=$							
0.6 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

(i) Values of the constant C_{m}.

Value of $C_{\mathrm{m}}=$							
0.4 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

The minimum radius R_{m} for $R_{\mathrm{i}}=7 R_{0}$.

Value of $\mathrm{R}_{\mathrm{m}}=$							
0.3 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

The temperature T_{m} of the gas at β_{m}.

Value of $T_{\mathrm{m}}=$							
0.3 pt	$/$	$/$	$/$	$/$	$/$	$/$	1

Theoretical Competition 25 April 2010

Student Code

Page No. \square Total No.

ANSWER SHEET
(j) The radius β_{u} at which the radial speed $u \equiv|\dot{\beta}|$ reaches its maximum value.

Expression of $\beta_{u}=$							
Value of $\beta_{u}=$							
0.6 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

The value of \bar{u} of the dimensionless radial speed u at $\beta=\bar{\beta} \equiv \frac{1}{2}\left(\beta_{\mathrm{m}}+\beta_{u}\right)$.

Value of $\bar{u}=$							
0.4 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

The time duration Δt_{m} for β to diminish from β_{u} to the minimum value β_{m}.

Expression of $\Delta t_{\mathrm{m}}=$							
Value of $\Delta t_{\mathrm{m}}=$							
0.6 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

Theoretical Competition
25 April 2010
Student Code

Page No. \square Total No.

ANSWER SHEET
(k) The power \dot{E} supplied to the bubble at β.

Expression of $\dot{E}=$							
0.6 pt	$/$	$/$	$/$	$/$	$/$	$/$	$/$

The upper bound of the emissivity a.

Expression of $a=$ Value of $a=$						
0.8 pt	$/$	$/$	$/$	$/$	$/$	$/$

