Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field
MARKING SCHEME

a) 0.2	Correct expression for ϵ	0.1	Disregard overall sign
	Correct expression for I	0.1	Disregard overall sign
b) 0.6	Understanding Gauss law for cylinder: $\Delta \Phi_{\mathrm{z}}=\Phi_{\mathrm{r}}$	0.3	
	Writing $\Phi_{r}=2 \pi r \Delta z B_{r}$	0.1	
	Result for B_{r}	0.2	Disregard overall sign
c) 0.5	Writing $F(t)$ correctly	0.1	
	Decomposing into sine-squared and sine-cosine products	0.2	
	Final answer	0.2	
d) 1.3	Reasonable circuit diagram for measuring current and voltage	0.1	
	Correct 4-terminal circuit diagram	0.2	
	Current and voltage measurements	0.3	At least 3 measurement sets -0.3 2 measurement sets -0.2 1 measurement set - 0.1
	Took into account that the measured voltage is not on the whole ring	0.1	
	Result for the resistance	0.5	Within $1.67 \mathrm{~m} \Omega-1.74 \mathrm{~m} \Omega-0.5$ Within $1.62 \mathrm{~m} \Omega-1.79 \mathrm{~m} \Omega-0.3$ Within $1.35 \mathrm{~m} \Omega-2.05 \mathrm{~m} \Omega-0.1$
	Error estimation	0.1	
e) 1.3	Measurement of closed ring's average diameter	0.2	
	Weighing the rings	0.1	
	Writing $R_{2} / R_{1}=\left(l_{2} / l_{1}\right)\left(A_{1} / A_{2}\right)$	0.1	
	Writing $A_{1} / A_{2}=\left(l_{2} / l_{1}\right)\left(m_{1} / m_{2}\right)$	0.2	
	Taking into account the gap in the open ring	0.1	
	Result	0.4	Within $0.150 \mathrm{~m} \Omega-0.160 \mathrm{~m} \Omega-0.4$ Within $0.145 \mathrm{~m} \Omega-0.165 \mathrm{~m} \Omega-0.2$ Within $0.120 \mathrm{~m} \Omega-0.190 \mathrm{~m} \Omega-0.1$
	Error estimation	0.2	
f) 1.5	Range of measured EMF	0.3	$\begin{aligned} & \text { At least } 5 \mathrm{mV}-20 \mathrm{mV}-0.3 \\ & \text { At least } 7 \mathrm{mV}-14 \mathrm{mV}-0.1 \end{aligned}$
	Number of measurement points	0.3	$\begin{aligned} & \hline \text { At least } 30 \text { points }-0.3 \\ & 20-29 \text { points }-0.1 \\ & \hline \end{aligned}$
	Calculating z from number of turns	0.2	Either for each separate point or as a collective statement of units
	Penalty for not writing correct units in the table	-0.1	

	Graph of $\epsilon(z)$	0.7	Reasonably smooth shape -0.2 Using most of the paper area -0.2 Error bars - 0.1 Axes properly marked - 0.1 Units - 0.1
g) 1.0	Range of measured force	0.3	$\begin{array}{\|l} \hline \text { At least } 0.3 \mathrm{gf}-5.5 \mathrm{gf}-0.3 \\ \text { At least } 0.6 \mathrm{gf}-3 \mathrm{gf}-0.1 \\ \hline \end{array}$
	Number of measurement points	0.3	$\begin{array}{\|l\|} \hline \text { At least } 30 \text { points }-0.3 \\ 20-29 \text { points }-0.1 \\ \hline \end{array}$
	Calculating z from number of turns	0.2	Either for each separate point or as a collective statement of units
	Subtracting the weight of the ring+block	0.1	Either with Tare option or manually
	Errors	0.1	
	Penalty for not writing correct units	-0.1	
h) 1.4	Finding the derivative $d \epsilon / d z$ or $d \epsilon^{2} / d z$ using differences between points on a smoothed graph	1.1	Drawing a smooth line on the graph (not exactly along the points) -0.2 Finding the derivative from differences between points on the smooth line -0.5 Using symmetric pairs of points for the derivative calculation - 0.2 Using reasonable spacing of the pairs of points 0.2
	Finding the derivative of $d \epsilon / d z$ or $d \epsilon^{2} / d z$ using differences between measured points		Finding the derivative from differences between the measured points - 0.4 Using symmetric pairs of points for the derivative calculation -0.2 Using reasonable spacing of the pairs of points ($6 \mathrm{~mm}-12 \mathrm{~mm}$) - 0.5 (Partial credit for spacing of $4 \mathrm{~mm}-6 \mathrm{~mm}$ or 1215 mm - 0.2)
	Finding the derivative by drawing tangents to the graph		Partial credit of 0.3 out of 1.1 for using this method.
	Number of points where the derivative was found	0.3	$\begin{array}{\|l\|} \hline \text { At least } 15 \text { points }-0.3 \\ 10-14 \text { points }-0.1 \\ \hline \end{array}$
i) 2.2	Graph	0.7	Appropriate axes (e.g. $\langle F\rangle$ vs. $d \epsilon_{\text {rms }}^{2} / d t$), properly marked - 0.2 Using most of the paper area -0.2 Error bars - 0.2 Units - 0.1
	Using a linear region for the slope	0.2	
	Finding the slope	0.1	
	Error of the slope	0.1	

	Expressing L from the slope	0.2	Writing an equation for $L-0.1$ Solving the equation (with correct root) -0.1 Partial credit for neglecting $\omega L / R$ and a correct calculation otherwise -0.1
	Result for L	0.7	$0.110 \mu \mathrm{H}-0.121 \mu \mathrm{H}-0.7$ $0.100 \mu \mathrm{H}-0.130 \mu \mathrm{H}-0.4$ $0.090 \mu \mathrm{H}-0.140 \mu \mathrm{H}-0.1$
		0.2	
	Error calculation for L		

