Question Number 2

Experimental Question 2: An Optical "Black Box"
MARKING SCHEME

| a) 0.4 | Writing the reflection law | 0.1 |  |
| :---: | :---: | :---: | :---: |
|  | Correct result | 0.3 |  |
| b) 0.5 | Correct answer | 0.5 |  |
| c) 0.8 | Value of $\varphi$ | 0.6 | Partial credit for $\varphi$ corresponding to the edge of the reflection pattern -0.2 |
|  | Error estimation | 0.2 | $\begin{aligned} & 0.02^{\circ}-0.1^{\circ}-\text { Full credit of } 0.2 \\ & 0.11^{\circ}-0.5^{\circ}-\text { Partial credit of } 0.1 \end{aligned}$ |
| d) 0.5 | Correct answer | 0.5 |  |
| e) 1.4 | Measuring the distance $y$ between the sample and the bench | 0.1 |  |
|  | Choosing a large enough distance $y$ | 0.3 | $\begin{array}{\|l\|} \hline \text { At least } 70 \mathrm{~cm}-0.3 \\ 25 \mathrm{~cm}-69 \mathrm{~cm}-0.1 \end{array}$ |
|  | Distance $x$ between two positions of the stake (or equivalent) | 0.1 |  |
|  | Calculating $\delta_{0}$ from measurements | 0.1 |  |
|  | Value of $\delta_{0}$ | 0.7 | $\begin{aligned} & 30.6^{\circ}-31.6^{\circ}-0.7 \\ & 30.3^{\circ}-32.0^{\circ}-0.5 \\ & 30.0^{\circ}-32.3^{\circ}-0.3 \\ & 29.6^{\circ}-32.7^{\circ}-0.1 \end{aligned}$ |
|  | Error estimation | 0.1 |  |
| f) 1.4 | Measuring the distance $y$ between the sample and the bench | 0.1 |  |
|  | Choosing a large enough distance $y$ | 0.3 | $\begin{array}{\|l\|} \hline \text { At least } 70 \mathrm{~cm}-0.3 \\ 25 \mathrm{~cm}-69 \mathrm{~cm}-0.1 \end{array}$ |
|  | Distance $x$ between two positions of the stake (or equivalent) | 0.1 |  |
|  | Calculating $\delta_{\text {min }}$ from measurements | 0.1 |  |
|  | Value of $\delta_{\text {min }}$ | 0.7 | $\begin{aligned} & 30.4^{\circ}-31.0^{\circ}-0.7 \\ & 30.1^{\circ}-31.3^{\circ}-0.5 \\ & 29.8^{\circ}-31.6^{\circ}-0.3 \\ & 29.5^{\circ}-32.0^{\circ}-0.1 \end{aligned}$ |
|  | Error estimation | 0.1 |  |
| g) 0.8 | Writing equations for $n$ | 0.2 |  |
|  | Extracting an expression for $n$ | 0.4 |  |
|  | Using the correct angle of the prism | 0.2 |  |
| h) 0.7 | Value of $n_{v}$ | 0.3 | $\begin{array}{\|l\|} \hline 1.601-1.607-0.3 \\ 1.595-1.613-0.2 \\ 1.574-1.634-0.1 \\ \hline \end{array}$ |


|  | Error calculation | 0.3 |  |
| :---: | :---: | :---: | :---: |
|  | Value of the error | 0.1 |  |
| i) 1.0 | Measured distance $y$ to the screen | 0.1 |  |
|  | Large enough range of points $x$ on the screen | 0.3 | At least $20 \mathrm{~cm}-0.3$ <br> $15 \mathrm{~cm}-19 \mathrm{~cm}-0.2$ <br> $10 \mathrm{~cm}-14 \mathrm{~cm}-0.1$ |
|  | Enough fringes | 0.2 | $\begin{array}{\|l\|} \hline \text { At least } 8 \text { fringes }-0.2 \\ 6-7 \text { fringes }-0.1 \\ \hline \end{array}$ |
|  | Correct counting | 0.2 |  |
|  | Converting distances to angles | 0.2 |  |
|  | Penalty for no errors in measurements | -0.1 |  |
|  | Penalty for no errors in $\theta$ | -0.1 |  |
| j) 1.5 | Graph | 0.5 | Correct axes (e.g. $\sin \theta$ vs. $m$ ), properly marked 0.1 <br> Reasonably linear - 0.3 <br> Efficient use of the graph paper's area - 0.1 |
|  | Finding the slope | 0.1 |  |
|  | Error of the slope | 0.1 |  |
|  | Result for $d$ | 0.6 | $49.3 \mu \mathrm{~m}-50.7 \mu \mathrm{~m}-0.6$ $48.5 \mu \mathrm{~m}-51.5 \mu \mathrm{~m}-0.4$ $47 \mu \mathrm{~m}-53 \mu \mathrm{~m}-0.2$ |
|  | Calculation of error in $d$ | 0.1 |  |
|  | Value of error in $d$ | 0.1 |  |
| k) 1.0 | Measuring the deflection angle | 0.3 | Measuring the distance $x$ along the screen or counting fringes -0.1 <br> Deducing the angle -0.2 |
|  | Value of $n_{r}$ | 0.5 | $\begin{aligned} & 1.577-1.581-0.5 \\ & 1.573-1.585-0.3 \\ & 1.567-1.590-0.2 \\ & 1.550-1.610-0.1 \end{aligned}$ |
|  | Calculation of error in $n_{r}$ | 0.1 |  |
|  | Value of error in $n_{r}$ | 0.1 |  |

