Question Number 1

Theoretical Question 1: The Shockley-James Paradox
 SOLUTION

a. The magnetic field created by the large loop at its center is:

$$
B=\frac{\mu_{0} I_{2}}{2 R}
$$

Since $r \ll R$, this is the field throughout the area of the small loop. Therefore, the flux through the small loop is given by:

$$
\Phi_{B 1}=\pi r^{2} B=\frac{\pi \mu_{0} r^{2} I_{2}}{2 R}
$$

The mutual inductance is then given by:

$$
M_{21}=\frac{\pi \mu_{0} r^{2}}{2 R}
$$

b. Since $M_{12}=M_{21}=M$, we have:

$$
\Phi_{B 2}=M I_{1}=\frac{\pi \mu_{0} r^{2} I_{1}}{2 R}
$$

Taking the derivative with respect to time, this becomes:

$$
\varepsilon_{2}=\frac{\pi \mu_{0} r^{2} \dot{I}_{1}}{2 R}
$$

c. The EMF is work per unit charge, while the electric field is force per unit charge. Therefore:

$$
E=\frac{\varepsilon_{2}}{2 \pi R}=\frac{\mu_{0} r^{2} \dot{I}_{1}}{4 R^{2}}
$$

d. The electric field from part (c) leads to a force:

$$
F=E Q=\frac{\mu_{0} r^{2} Q \dot{I}}{4 R^{2}}
$$

Integrating over $d t$ (and disregarding the sign), we get the impulse:

$$
\Delta p=\frac{\mu_{0} r^{2} I Q}{4 R^{2}}
$$

e. The current can be written as:

$$
I=n A q v
$$

where v is the charge carriers' velocity. We therefore have:

$$
v=\frac{I}{n A q}
$$

The momentum is then given by:

$$
p=\gamma m n A l v=\frac{m n A l v}{\sqrt{1-v^{2} / c^{2}}}=\frac{m I l}{q}\left(1-\left(\frac{I}{n A q c}\right)^{2}\right)^{-1 / 2}
$$

where γ is the Lorentz factor associated with v.
f. The hidden momentum is due to the charge carriers in the two vertical sides of the loop. Let m be the mass of the charge carriers, let q be their charge, and let $\Delta U=k Q q l / R^{2}$ be the potential energy difference for a charge carrier between the two sides. Denote the longitudinal densities and velocities of the charges in the two sides by $\lambda_{1}, v_{1}, \lambda_{2}$ and v_{2}. Let γ_{1} and γ_{2} be the appropriate Lorentz factors. From the constant value of the current, we have:

$$
q \lambda_{1} v_{1}=q \lambda_{2} v_{2}=I
$$

Energy conservation for the charge carriers passing from one side to the other reads:

$$
\left(\gamma_{2}-\gamma_{1}\right) \cdot m c^{2}=\Delta U
$$

The total momentum now reads:

$$
p_{\text {hid }}=p_{2}-p_{1}=m l\left(\gamma_{2} \lambda_{2} v_{2}-\gamma_{1} \lambda_{1} v_{1}\right)=\frac{m I l}{q}\left(\gamma_{2}-\gamma_{1}\right)=\frac{I l \Delta U}{q c^{2}}=\frac{k Q I l^{2}}{R^{2} c^{2}}
$$

Note that all the microscopic quantities m, q, λ_{i} and v_{i} have dropped out.
g) In part (d), the magnetic moment is $\mu=\pi r^{2} I$, and we get:

$$
\Delta p=\frac{\mu_{0} Q \mu}{4 \pi R^{2}}
$$

In part (f), the magnetic moment is $\mu=l^{2} I$, and we get:

$$
p_{\text {hid }}=\frac{k Q \mu}{R^{2} c^{2}}=\frac{\mu_{0} Q \mu}{4 \pi R^{2}}
$$

We see that the results are identical.
h) The answer is $(\mathrm{A})+(\mathrm{C})$. (A) is true because ΔU between the near side and the far side of the loop vanishes. (B) cannot be true, because the back-reaction of the induced charges on the external charge is a higher-order effect; for instance, it involves higher powers of Q. Then the conservation of center-of-mass velocity requires that (C) is true.

