Theoretical Competition

3 May 2011

Page No.	
Total No.	

	\Box		
Student Code	1 1	1 1	
Student Code	1 1	1 1	

Theoretical Question 3: Birthday Balloon

ANSWER FORM

a.	$\sigma_L/\sigma_t =$	
b.	Expression for $P(V)$ from Hooke's law:	
	P(V) =	
	Graph of $P - P_0$ as a function of V for Hooke's law:	
	Maximal inflation pressure from Hooke's law:	
	$P_{max} =$	
c.	Graph of $P - P_0$ as a function of V for realistic rubber and uniform inflation:	

Theoretical Competition

3 May 2011

Student Code

A	esti		BI	 	
	OCTI	α n	MI	or	
Uu	CSLI	UII	INU		

Page No.

	R
Total No.	

Value of $P - P_0$ at r = 0.5 cm: Value of $P - P_0$ at r = 2.5 cm:

 $V_2 =$

e. Graph of $P - P_0$ as a function of V taking the split into account:

 $\mathbf{f.} \quad L_{thin}(V) =$

g. $\Delta W/\Delta L_{thin} =$