Question Number 3

Theoretical Question 3: Birthday Balloon
 SOLUTION

a. Solution using forces:

Let the balloon's radius be r, and let P be the pressure of the inside air. Consider the balloon's rear half, and write down the equilibrium of forces on it along the cylinder's axis:

$$
\pi r^{2}\left(P-P_{0}\right)=2 \pi r \sigma_{L}
$$

On the other hand, let us cut the balloon in half with a plane that runs along its axis, and consider a half-cylindrical section of length x. The equilibrium of forces in perpendicular to the cutting plane reads:

$$
2 r x\left(P-P_{0}\right)=2 x \sigma_{t}
$$

from which we derive $\sigma_{L} / \sigma_{t}=1 / 2$.

Solution using energies:

If we stretch the balloon longitudinally by length $d L$, the energy cost is:

$$
E_{1}=2 \pi r \sigma_{L} \cdot d L
$$

If we inflate the balloon radially with an increment $d r$, the energy cost is:

$$
E_{2}=L \sigma_{t} \cdot 2 \pi d r
$$

The two deformations can be combined while keeping the volume fixed, if we take $\pi r^{2} d L=-L d\left(\pi r^{2}\right)=-2 \pi L r d r$, i.e. $r d L=-2 L d r$. The equilibrium state is the one where the combined energy $\operatorname{cost} E_{1}+E_{2}$ of such a deformation is zero. This gives again the result $\sigma_{L} / \sigma_{t}=1 / 2$.
b. From part (a), we are reminded of the relation between surface tension and pressure:

$$
P=P_{0}+\frac{\sigma_{t}}{r}=P_{0}+\frac{k\left(r-r_{0}\right)}{r_{0} r}=P_{0}+k\left(\frac{1}{r_{0}}-\frac{1}{r}\right)
$$

The volume is related to the radius by:

$$
V=\pi r^{2} L_{0}
$$

So we get:

$$
P(V)=P_{0}+k\left(\frac{1}{r_{0}}-\sqrt{\frac{\pi L_{0}}{V}}\right)
$$

The graph of $P-P_{0}$ is a hyperbola-like function increasing from 0 at $V=\pi r_{0}^{2} L_{0}$ to an asymptotic value of k / r_{0} at $V \rightarrow \infty$.

The maximal pressure is obtained at $V \rightarrow \infty$:

$$
P_{\max }=P_{0}+\frac{k}{r_{0}}
$$

c. The graph of $P-P_{0}$ as a function of V has the same qualitative form as $P-P_{0}=\sigma_{t} / r$ as a function of r, shown below. The graph rises from zero, then decreases, and then increases again. The points $r=1 \mathrm{~cm}$ and $r=2.5 \mathrm{~cm}$ lie in the decreasing portion (and not on the local extrema).

The pressures at the two requested points are approximately given by:

$$
P-P_{0}(r=1 \mathrm{~cm})=\frac{\sigma}{r}=\frac{30}{0.01}=3000 \mathrm{~Pa} ; \quad P-P_{0}(r=2.5 \mathrm{~cm})=\frac{30}{0.025}=1200 \mathrm{~Pa}
$$

d. The work done on the pressure-controlling mechanism during continuous inflation from volume V_{i} to volume V_{f} is:

$$
W_{\text {mech }}=-P\left(V_{f}-V_{i}\right)
$$

The work done on the atmosphere is:

$$
W_{\text {surr }}=P_{0}\left(V_{f}-V_{i}\right)
$$

The condition for the jump is:

$$
W_{\text {rubber }}+W_{\text {surr }}+W_{\text {mech }}=0
$$

This translates into Maxwell's equal-areas condition:

$$
\int_{V_{i}}^{V_{f}}\left(P-P_{0}\right) d V=\left(P-P_{0}\right)\left(V_{f}-V_{i}\right)
$$

Or, equivalently:

$$
\int_{V_{i}}^{V_{f}} P d V=P\left(V_{f}-V_{i}\right)
$$

The cubic function $P(V)$ is symmetric around the point $V=u, P-P_{0}=a c$.
The equal-areas condition is therefore satisfied at:

$$
P_{c}=P_{0}+a c
$$

The volumes V_{1} and V_{2} are given by the points where:

$$
(V-u)^{3}-b(V-u)=0
$$

This gives:

$$
V_{1,2}=u \pm \sqrt{b}
$$

e. The range of volumes where a phase separation will occur is $V_{1}<V<V_{2}$. The pressure is constant throughout this range, and equals the transition pressure P_{c}. The graph of $P-P_{0}$ as a function of V is monotonous, with a rising piece, a horizontal plateau at $V_{1}<V<V_{2}, P=P_{c}$, followed by another rising piece. At the start and end of the plateau, the slope has a discontinuity, i.e. the graph has a kink.

f. The radii of the two domains correspond to the volumes V_{1} and V_{2}. As the total volume increases from V_{1} to V_{2}, the volume of the thin domain changes linearly from V_{1} to 0 . We get:

$$
V_{\text {thin }}=\frac{V_{1}}{V_{2}-V_{1}}\left(V_{2}-V\right)
$$

Converting this into length, we have:

Theoretical Competition
3 May 2011
Question Number 3

$$
L_{\text {thin }}=\frac{V_{\text {thin }}}{\pi r_{1}^{2}}=\frac{V_{1}\left(V_{2}-V\right)}{\pi r_{1}^{2}\left(V_{2}-V_{1}\right)}
$$

g. The increase in the balloon's volume as a result of converting a length $L_{\text {thin }}$ into the thick phase is:

$$
\Delta V=\frac{V_{2}-V_{1}}{V_{1}} \Delta V_{\text {thin }}=\frac{\pi r_{1}^{2}\left(V_{2}-V_{1}\right)}{V_{1}} \Delta L_{\text {thin }}
$$

The corresponding work is:

$$
\Delta W=P_{c} \Delta V=\frac{\pi r_{1}^{2} P_{c}\left(V_{2}-V_{1}\right)}{V_{1}} \Delta L_{\text {thin }}
$$

Therefore:

$$
\frac{\Delta W}{\Delta L_{\text {thin }}}=\frac{\pi r_{1}^{2} P_{c}\left(V_{2}-V_{1}\right)}{V_{1}}
$$

Additional discussion (doesn't appear as part of the question):

During a realistic inflation, perturbations are not strong enough to keep the system in global equilibrium at all times. The experimental graph increases up to P_{c}, continues to increase some way beyond it, reaches a local maximum, then decreases and settles on the plateau at P_{c}. This over-increase of the pressure is responsible for the fact that inflating a balloon is difficult during the first few puffs. After the plateau, the graph sharply increases as discussed above. The decrease towards the plateau "overshoots" slightly again, reaches a local minimum and rises again to settle on the plateau. This behavior is depicted in the graph below.

The illustration is taken from:
http://www.science-project.com/_members/science-projects/1989/12/1989-12-body.html

