Model Solution

We will assume the relationship of the form:

$$
\begin{gathered}
P=f(W) h(\theta) \\
M_{\mathrm{p}}=f\left(M_{\mathrm{w}}\right) h(\theta)
\end{gathered}
$$

M_{w} represents the mass in the hanger (Load)
M_{p} represents the mass in the pan + the mass of the pan (i.e. $M_{p}^{\prime}+M_{p a n}$) (Effort)
The relation between these variables can be found in two parts:

- Relation between M_{P} and M_{W}
- Relation between M_{P} and θ

Part 1:

Mass of the pan $=28.6 \mathrm{~g}$
$\boldsymbol{\theta}=\boldsymbol{\pi}$ radians

| Obs.
 No. | M_{w} / g | M_{p-}^{\prime}
 $/ g$ | M_{p+}^{\prime}
 $/ g$ | $M_{p(\text { average })}^{\prime}$
 $/ g$ | $M_{p(\text { average })}=M_{p(\text { average) }}^{\prime}$
 $/ g$ | $M_{p a n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $\Delta M_{p}=\frac{M_{p+}^{\prime}-M_{p-}^{\prime}}{2}$ |
| :---: |
| 1 |

$13^{\text {th }}$ Asian Physics Olympiad May 01-07, 2012, New Delhi	13 Uh(o)	EXPERIMENT NO. -1

Graph of $M_{\mathrm{P}} \mathrm{v} / \mathrm{s} M_{\mathrm{W}}$:

Slope of the graph $=0.7583$
This shows that

$$
\begin{equation*}
P \propto W \tag{1}
\end{equation*}
$$

$13^{\text {th }}$ Asian Physics Olympiad May 01-07, 2012, New Delhi

Part 1:

$$
\begin{aligned}
& M_{\mathrm{w}}=800.0 \mathrm{~g} \\
& M_{\mathrm{pan}}=28.6 \mathrm{~g}
\end{aligned}
$$

Obs. No.	θ $/ \mathrm{rad}$	M_{p-}^{\prime} $/ g$	M_{p+}^{\prime} $/ g$	$M_{p(\text { average })}^{\prime}$ $/ \mathrm{g}$	$M_{p(\text { averag })}=M_{p(\text { averag })}^{\prime}+M_{p a n}$ $/ \mathrm{g}$	$\Delta M_{p}=\frac{M_{p+}^{\prime}-M_{p-}^{\prime}}{2}$
1	π	565	575	570	598.6	$/ g$

The graph between M_{p} and θ shows a curve.

There can be possibilities of different functional relationship.
1)

The possible functions can be $\frac{1}{\theta}, \frac{1}{\theta^{2}}, e^{-k \theta}$
For the first two functions mentioned above, at $\theta=0, M_{\mathrm{p}}$ will reach infinite value which is not possible. For the third function we know that M_{p} will have some finite value.
2)

If the function is anticipated as exponential one then it can be verified using half value technique whether at every half value of Mp , and then plotting $\ln M_{\mathrm{p}}$ or better still
$\ln \left(M_{p} / M_{w}\right)$ against θ.
If it is a straight line with slope $-k$,

$$
\begin{align*}
M_{p} & \propto e^{-k \theta} \\
& \text { or } \\
& P \propto e^{-k \theta} \tag{2}
\end{align*}
$$

From (1) and (2),

$$
\begin{equation*}
P \propto W e^{-k \theta} \tag{3}
\end{equation*}
$$

The constant k in the above expression is equated to the coefficient of friction, μ.

$$
\begin{equation*}
P=C W e^{-\mu \theta} \tag{4}
\end{equation*}
$$

The constant of proportionality in equation (4) is 1 . This is because at $\theta=0$ rad, $P=W$.

$$
\begin{equation*}
P=W e^{-\mu \theta} \tag{5}
\end{equation*}
$$

From the graph,

$$
\ln \left(\frac{M_{p}}{M_{w}}\right)=-\mu \theta
$$

where μ is the slope of the graph.
From the graph, $\mu=0.106$
$\frac{\Delta S}{S}=\frac{\left(S_{1} \sim S_{2}\right) / 2}{S}=0.10049$
$\Delta S=0.01067=\Delta \mu$
$u_{C}(\mu)=0.00616$
$U(\mu)=0.0123 \approx 0.02$

$$
\mu=0.11 \pm 0.02
$$

Part 2:

When the pan is moving up:

$$
\begin{equation*}
M_{p 1}=M_{u} e^{-\mu \theta} \tag{6}
\end{equation*}
$$

When the pan is moving down:

$$
\begin{equation*}
M_{p 2}=M_{u} e^{\mu \theta} \tag{7}
\end{equation*}
$$

$M_{p 1}^{\prime}$		$M_{p 1(\text { average })}^{\prime}$	$\Delta M_{p 1}^{\prime}$	$M_{p 1}=M_{p 1}^{\prime}+M_{p a n}$
$M_{p 1+}^{\prime}$	$M_{p 1-}^{\prime}$		4	188.6
164	156	160		

$M_{p 2}^{\prime}$		$M_{p 2(\text { average })}^{\prime}$	$\Delta M_{p 2}^{\prime}$	$M_{p 2}=M_{p 2}^{\prime}+M_{p a n}$
$M_{p 2+}^{\prime}$	$M_{p 2-}^{\prime}$			
49	45	47	2	75.6

For M_{u} :
Multiplying equation (6) and (7),

$$
\begin{gathered}
M_{u}=\sqrt{M_{p 1} \cdot M_{p 2}} \\
M_{u}=\sqrt{188.6 \times 75.6}=119.4075 \mathrm{~g}
\end{gathered}
$$

For μ :
Dividing equation (6) by (7),

$$
\begin{gathered}
\frac{M_{p 1}}{M_{p 2}}=e^{2 \mu \theta} \\
\mu=\frac{1}{2 \theta} \ln \left(\frac{M_{p 1}}{M_{p 2}}\right)
\end{gathered}
$$

For $\theta=\pi$

$$
\mu=\frac{1}{2 \pi} \ln \left(\frac{M_{p 1}}{M_{p 2}}\right)
$$

$$
\mu=\frac{1}{2 \pi} \ln \left(\frac{188.6}{75.6}\right)=0.1456
$$

Uncertainty in M_{u} :

$$
\begin{gathered}
\frac{\Delta M_{u}}{M_{u}}=\sqrt{\left(\frac{1}{2} \frac{\Delta M_{p 1}}{M_{p 1}}\right)^{2}+\left(\frac{1}{2} \frac{\Delta M_{p 2}}{M_{p 2}}\right)^{2}}=\sqrt{\left(\frac{1}{2} \frac{4}{188.6}\right)^{2}+\left(\frac{1}{2} \frac{2}{75.6}\right)^{2}}=0.0169 \\
\Delta M_{u}=0.0169 \times 119.4075=2.018 \\
u_{C}\left(M_{u}\right)=\frac{1}{\sqrt{3}} \times 2.018=1.165 \\
U\left(M_{u}\right)=2 \times u_{C}\left(M_{u}\right)=2 \times 1.165=2.33 \approx 3 \\
M_{u}=119 \pm 3 \mathrm{~g}
\end{gathered}
$$

Uncertainty in μ_{u} :

$$
u_{C}\left(\mu_{u}\right)=\frac{1}{\sqrt{3}} \cdot \Delta \mu_{u}=\frac{1}{2 \pi \sqrt{3}} \sqrt{\left(\frac{\Delta M_{p 1}}{M_{p 1}}\right)^{2}+\left(\frac{\Delta M_{p 2}}{M_{p 2}}\right)^{2}}=\frac{1}{2 \pi \sqrt{3}} \sqrt{\left(\frac{4}{188.6}\right)^{2}+\left(\frac{2}{75.6}\right)^{2}}=0.003117
$$

$$
\begin{aligned}
U\left(\mu_{u}\right)=2 \times u_{C}\left(\mu_{u}\right) & =2 \times 0.003117=0.00623 \approx 0.007 \\
\mu_{u} & =0.146 \pm 0.007
\end{aligned}
$$

