Grading Scheme for Experimental Problem - 2

No fraction less than 0.1 marks should be given for any answer. Nowhere marks are to be deducted according to the marking scheme.

Part 1

Quantity observed	Magnitude to be checked	criteria	marks	Total
Part 1				
a)Coil 1 air core				
Measured voltages	$\left\|\mathrm{V}-\mathrm{V}_{\mathrm{R}^{\prime}}\right\| \quad\left(\mathrm{R}^{\prime} \approx 450 \Omega\right)$	$\leq 0.15 \mathrm{~V}$	0.1	
Measured voltages	$\mathrm{V}_{\mathrm{A}}, \mathrm{V}, \mathrm{V}_{\mathrm{R}^{\prime}}, \mathrm{Vo}$	Measured once	0.1	
	$\mathrm{V}_{\mathrm{A}}, \mathrm{V}, \mathrm{V}_{R^{\prime}}, \mathrm{Vo}$	Measured second time reversing the DMM polarity	0.1	
Calculated value of Z_{1}		Between 435-465 Ω	0.1	
Calculated value of R_{1}		Between 40-47 Ω	0.1	
Calculated value of L_{1}		Between 0.069-0.073 H	0.1	
Standard uncertainty $\mathrm{u}_{\mathrm{s}}\left(\mathrm{R}_{1}\right)$		Between 1.1 and 1.2	0.1	
Expanded uncertainty in R_{1}		$\pm 3 \Omega$	0.1	
Expanded uncertainty in L_{1}		$\pm 0.0002 \mathrm{H}$	0.1	
				0.9
b)Coil 2 air core				
Measured voltages	$\left\|\mathrm{V}-\mathrm{V}_{\mathrm{R}^{\prime}}\right\| \quad\left(\mathrm{R}^{\prime} \approx 350-360 \Omega\right)$	$\leq 0.15 \mathrm{~V}$	0.1	
	$\mathrm{V}_{\mathrm{A}}, \mathrm{V}, \mathrm{V}_{\mathrm{R}^{\prime}}, \mathrm{Vo}$	Measured once	0.1	
	$\mathrm{V}_{\mathrm{A}}, \mathrm{V}, \mathrm{V}_{\mathrm{R}^{\prime}}, \mathrm{Vo}$	Measured second time reversing the DMM polarity	0.1	
Calculated value of Z_{2}		Between 335-365 Ω	0.1	
Calculated value of R_{2}		Between $40-47 \Omega$	0.1	
Calculated value of L_{2}		Between 0.052-0.059 H	0.1	
Standard uncertainty u_{s} (R2)		Between 0.85 and 0.97	0.1	
Expanded uncertainty in R_{2}		$\pm 3 \Omega$	0.1	
Expanded uncertainty in L_{2}		$\pm 0.0001 \mathrm{H}$ or $\pm 0.0002 \mathrm{H}$	0.1	
				0.9
c) Coil 1 Al core				
Measured voltages	$\left\|V-V_{R^{\prime}}\right\| \quad\left(R^{\prime} \approx 300 \Omega\right)$	$\leq 0.15 \mathrm{~V}$	0.1	

EXPERIMENT 2

	$\mathrm{V}_{\mathrm{A}^{\prime}}, \mathrm{V}, \mathrm{V}_{\mathrm{R}^{\prime}}, \mathrm{Vo}$	Measured once		
	$\mathrm{V}_{\mathrm{A}}, \mathrm{V}, \mathrm{V}_{\mathrm{R}^{\prime}}, \mathrm{Vo}$	Measured second time reversing the DMM polarity	0.1	
Calculated value of $\mathrm{Z}_{1}{ }^{*}$		Between $280-310 \Omega$	0.1	
Calculated value of $\mathrm{R}_{1}{ }^{*}$		Between $100-110 \Omega$	0.1	
Calculated value of $\mathrm{L}_{1}{ }^{*}$		Between $0.042-0.046 \mathrm{H}$	0.1	
Standard uncertainty $\mathrm{u}_{5}\left(\mathrm{R}^{*}{ }_{1}\right)$		Between 1.1 and 1.4	0.1	
Expanded uncertainty in $\mathrm{R}_{1}{ }^{*}$		$\pm 3 \Omega$	0.1	
Expanded uncertainty in $\mathrm{L}_{1}{ }^{*}$		$\pm 0.0002 \mathrm{H}$	0.1	
				0.8

d) Coil 2 Al core				
Measured voltages	$\left\|\mathrm{V}-\mathrm{V}^{\prime}\right\| \quad\left(\mathrm{R}^{\prime} \approx 280 \Omega\right)$	$\leq 0.15 \mathrm{~V}$	0.1	
	$\mathrm{V}_{A^{\prime}}, \mathrm{V}, \mathrm{V}_{\mathrm{R}^{\prime}}, \mathrm{Vo}$	Measured once		
	$\mathrm{V}_{\mathrm{A}}, \mathrm{V}, \mathrm{V}_{\mathrm{R}^{\prime}}$, Vo	Measured second time reversing the DMM polarity	0.1	
Calculated value of $\mathrm{Z}_{2}{ }^{*}$		Between $275-285 \Omega$	0.1	
Calculated value of $\mathrm{R}_{2}{ }^{*}$		Between 64-76 Ω	0.1	
Calculated value of $\mathrm{L}_{2}{ }^{*}$		Between 0.040-0.044 H	0.1	
Standard uncertainty $u_{s}\left(R^{*}\right)$		Between 0.91 and 1.2	0.1	
Expanded uncertainty in $\mathrm{R}_{2}{ }^{*}$		$\pm 2 \Omega$ or $\pm 3 \Omega$	0.1	
$\begin{aligned} & \text { Expanded uncertainty } \\ & \text { in } \mathrm{L}_{2}^{*} \end{aligned}$		$\pm 0.0002 \mathrm{H}$	0.1	
				0.8

Part 2				
f) M \& k				
Calculated value of $M_{\text {air }}$	$\omega M=R^{\prime}\left(V_{o} / V_{R^{\prime}}\right)$ mean of both coils	0.052 H (range of $\pm 0.002 \mathrm{H}$)	0.1	
$\mathrm{k}_{\text {air }}$		0.84 (range of ± 0.02)	0.1	
Calculated value of M_{Al} or M^{*}	$\omega \mathrm{M}^{*}=\mathrm{R}^{\prime}\left(\mathrm{Vo} / \mathrm{V}_{\mathrm{R}^{\prime}}\right)$ mean of both coils	0.034 H (range of $\pm 0.001 \mathrm{H}$)	0.1	
k_{Al} or k^{*}	Observed $\mathrm{k}^{*}=\mathrm{k}-0.04$	(allow ± 0.02)	0.1	
				0.4
g) Measured voltages	R_{L} and $\mathrm{V}_{\mathrm{A}}, \mathrm{V}, \mathrm{V}_{\mathrm{R}^{\prime}}$, Vo			
	no of readings :	5	0.4	
	no of readings :	6 add	0.1	

EXPERIMENT 2

	no of readings :	7 add	0.1	
	Choice of R_{L} and choice of step; Effect of R_{L} will be noticed when its magnitude is of the order of X_{s}.	with equal steps $100,200,300$ Ω etc to cover range up to 700 to 1000Ω	0.1	
	Two readings for each voltage	with reversal for correction of asymmetry	0.1	
				0.8
h) Linearised relation	$\begin{aligned} & (\omega \mathrm{M})^{2}(\mathrm{ID} / \mathrm{Is})^{2}=\left(\mathrm{Rs}+\mathrm{R}_{\mathrm{L}}\right)^{2}+X \mathrm{~s}^{2} \\ & \mathrm{Or}\left(\mathrm{Rs}+\mathrm{R}_{\mathrm{L}}\right)^{2}=(\omega \mathrm{M})^{2}(\mathrm{Ip} / \mathrm{Is})^{2}-\mathrm{Xs}^{2} \end{aligned}$	Correct rearrangement	0.2	
				0.2
i)	Number of secondary data generated from data of (g)	4	0.2	
		5 add	0.2	
		6 add	0.2	
Calculated values	$\mathrm{Ip}=\mathrm{V}_{\mathrm{R}^{\prime}} / 300$	Correct calculation	0.1	
Calculated values	$\mathrm{Is}=\mathrm{Vo} / \mathrm{R}_{\mathrm{L}}$	Correct calculation	0.1	
Calculated values	$\left(\mathrm{Rs}+\mathrm{R}_{\mathrm{L}}\right)^{2}$	Choice of correct value of Rs (= R_{2} of coil 2: air core)	0.1	
				0.9
$\begin{aligned} & \text { j) } \text { Graph of }\left(R_{s}+R_{L}\right)^{2} \\ & \text { vs }(I p / I s)^{2} \end{aligned}$	Proper choice of scale to occupy graph space (about 70\% or more)		0.1	
	Proper choice of origin To get intercept		0.1	
	M from slope	Between 0.050-0.54 H	0.1	
		If between 0.051-0.52 H add	0.1	
	Xs from intercept	Between 320-385 Ω	0.1	
		If between 335-360 Ω add	0.1	
	More than 5 points on straight line		0.1	
				0.7
Part 3				
k) Calculations of $R_{\text {PE }}$ and $X_{P E}$				
	$\mathrm{R}_{\text {PE }}=(300 / 2)\left[\left(\mathrm{V}^{2}{ }^{2}-\mathrm{V}^{2}{ }^{2}\right) / \mathrm{V}_{\mathrm{R}^{\prime}}{ }^{2}-1\right]$	Correct formula used	0.1	
	Number of data points calculated	5	0.1	
	Number of data points calculated	6 add	0.1	
	$\mathrm{X}_{\text {PE }}=\left[\mathrm{Z}_{\text {PE }}{ }^{2}-\mathrm{R}_{\text {PE }}{ }^{2}\right]^{1 / 2}$	Correct formula used	0.1	
	Number of data points calculated	5	0.1	
	Number of data points calculated	6 add	0.1	

				0.6
I) Calculations of R_{R} and X_{R}				
	$\mathrm{R}_{\mathrm{R}}=\left(\mathrm{Rs}+\mathrm{R}_{\mathrm{L}}\right) /(\mathrm{lp} / \mathrm{ls})^{2}$	Correct formula used	0.1	
	Number of data points calculated	5	0.1	
	Number of data points calculated	6 add	0.1	
	$\mathrm{X}_{\mathrm{R}}=\mathrm{XS} /(\mathrm{lp} / \mathrm{ls})^{2}$	Correct formula used	0.1	
	Number of data points calculated	5	0.1	
	Number of data points calculated	6 add	0.1	
				0.6
m) Graph of $X_{P E}$ VS X_{R}				
	Right choice of scale (to occupy more than 70\% space)		0.1	
	Right choice of origin to get intercept		0.1	
	slope	Between-0.9 \&-1.1	0.1	
	Intercept	Xp (found from part 1) $\pm 20 \Omega$	0.1	
	More than 5 points on the st.line		0.1	
	Inference $\mathrm{Xp}-\mathrm{X}_{\mathrm{R}}=\mathrm{X}_{\text {PE }}$		0.1	
				0.6
n) Graph of R_{R} vs R_{L}				
	Choice of scale (to occupy more than 70\% space)		0.1	
	Smooth curve		0.1	
	Peak shown is unambiguous		0.1	
	R_{R} is maximum at $\mathrm{R}_{L}=\mathrm{Xs}-\mathrm{Rs}$	R_{L} should be X2-R2 in a range of $\pm 20 \Omega$	0.1	
		If the range is ± 5 add	0.2	
				0.6

Part 4				
o) Model for Al core				
	$\mathrm{L}_{\text {core }} / \mathrm{R}_{\text {core }}=\left(\mathrm{Xp} \mathrm{-} \mathrm{X}^{*}\right) /\left(\mathrm{R}^{*}-\mathrm{Rp}\right) 2 \pi \mathrm{f}$	Correct formula showing clear understanding of concepts	0.4	
	Calculated value for coil 1	$\begin{array}{ll} \mathrm{Lc} / \mathrm{Rc} \approx 0.0046 \mathrm{H} / \Omega \\ \text { range of } \pm 0.003 & \mathrm{H} / \Omega) \end{array}$	0.2	
	Calculated value for coil 2	$\begin{array}{ll} \mathrm{Lc} / \mathrm{Rc} \approx 0.0046 & \mathrm{H} / \Omega \\ \text { (range of } \pm 0.003 & \mathrm{H} / \Omega) \end{array}$	0.2	
				0.8
p) Power loss in core				
measurements	$V_{A^{\prime}}, V, V_{R^{\prime}}, V o \text { with } R^{\prime}=300 \Omega \text { and } R_{L}=$ 1000Ω			

	same	With reversal of polarity	0.1	
	$\Delta \mathrm{P}=\mathrm{Ip}^{2}\left(R_{\mathrm{PE}}-R \mathrm{Rp}\right)-\mathrm{Is}^{2}\left(\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{L}}\right)$	Correct concept	0.2	
	Calculated value	$\Delta P=0.016 \mathrm{~W}(\pm 0.001 \mathrm{~W})$	0.1	
				0.4
				10.0

Note on uncertainty in R1, L1 etc.:
The combined standard uncertainty $\mathrm{u}_{\mathrm{c}}=\mathrm{V}\left(\mathrm{u}_{\mathrm{sy}}{ }^{2}+\mathrm{u}_{\mathrm{res}}{ }^{2}\right)$. Expanded uncertainty U is rounded up value of $2 \mathrm{u}_{\mathrm{c}}$.
In the case of R, worst case systematic error is given by
$\Delta R=R^{\prime}\left[\left(V_{A} \Delta V_{A}-V \Delta V\right) / V_{R^{\prime}}{ }^{2}-\left(V_{A}{ }^{2}-V^{2}\right) \Delta V_{R} / V_{R}{ }^{\prime}{ }^{3}\right]$ and $u_{s y}(R)=\Delta R / V 3$.
The standard uncertainty due to resolution in measurement is accepted as equal to 0.3 of the least count. On 20 V range the least count is 0.01 V . So the standard uncertainty is 0.003 V . The standard uncertainty in R due to resolution is given by
$u_{\text {res }}(R)=R^{\prime}\left[\left(V_{A} \times 0.003\right)^{2}+(V \times 0.003)^{2} / V_{R^{\prime}}{ }^{2}+\left\{\left(V_{A}{ }^{2}-V^{2}\right) \times 0.003 / / V_{R^{\prime \prime}}{ }^{3}\right\}\right]^{1 / 2}$.
$Z^{2}=R^{2}+X^{2}$. Therefore, $u(X)=\left[(Z u(Z))^{2}+(R u(R))^{2}\right]^{1 / 2} ; u(Z)=V\left[\left(u_{\text {sy }}{ }^{2}(Z)+u_{\text {res }}{ }^{2}(Z)\right]\right.$.

