II.1. Consider a shell of width $d r$ which is at the distance r from the centre of the star. Let ρ be the density of star. Gravitational Potential energy of shell is

$$
\begin{aligned}
d E_{G} & =-G \frac{\left(4 \pi r^{3} \rho / 3\right)\left(4 \pi r^{2} d r \rho\right)}{r} \\
E_{G} & =\int_{0}^{R} d E_{G}=-\frac{3}{5} \frac{G M^{2}}{R}
\end{aligned}
$$

0.5 mark
0.3 mark

It is negative, i.e. gravitational force is radially inward.
0.2 mark
II.2. Total energy of the star $E=E_{G}+E_{e}$.
0.2 mark

At equilibrium, at $R=R_{w d}$

$$
\begin{aligned}
\frac{d E}{d R} & =0 \\
\frac{d E_{G}}{d R} & =-\frac{d E_{e}}{d R} \\
\frac{3}{5} \frac{G M^{2}}{R_{w d}^{2}} & =\frac{\hbar^{2} \pi^{3}}{10 m_{e} 4^{2 / 3}}\left(\frac{3}{\pi}\right)^{7 / 3} \frac{2 N_{e}^{5 / 3}}{R_{w d}^{3}} \\
R_{w d} & =\frac{\hbar^{2} \pi^{3}}{6 G m_{e} 4^{2 / 3}}\left(\frac{3}{\pi}\right)^{7 / 3} \frac{2 N_{e}^{5 / 3}}{M^{2}}
\end{aligned}
$$

II.3. Since all the hydrogen is ionized, the number of protons $\left(N_{p}\right)=N_{e}$. Also $m_{p} \gg m_{e}$. Hence

$$
\begin{aligned}
N_{e} & =N_{p} \approx \frac{M}{m_{p}} \\
R_{w d} & =\frac{\hbar^{2} \pi^{3}}{6 G m_{e} 4^{2 / 3}}\left(\frac{3}{\pi}\right)^{7 / 3} \frac{2}{M^{1 / 3} m_{p}^{5 / 3}} \\
R_{w d} & =2.28 \times 10^{4} \mathrm{~km}
\end{aligned}
$$

$$
0.5 \text { mark }
$$

$$
1.0 \mathrm{mark}
$$

II.4. If $r_{\text {sep }}$ is average separation between electrons then

$$
\begin{aligned}
N_{e} \times \frac{4}{3} \pi r_{\text {sep }}^{3} & \approx \frac{4}{3} \pi R_{w d}^{3} \\
r_{\text {sep }}^{3} & =\frac{R_{w d}^{3}}{N_{e}} \approx R_{w d}^{3} \frac{m_{p}}{M} \\
r_{\text {sep }} & =2.13 \times 10^{-12} \mathrm{~m}
\end{aligned}
$$

$$
0.2 \text { mark }
$$

$$
0.2 \mathrm{mark}
$$

0.6 mark
II.5. For a particle confined in a box of length $r_{s e p}$, its de Broglie wavelength $\lambda_{d B}$ for the
ground state can be written as

$$
\begin{aligned}
\lambda_{d B} & =2 r_{\text {sep }} & & 0.2 \mathrm{mark} \\
\text { and momentum } p & =\frac{h}{\lambda_{d B}} & & 0.3 \mathrm{mark} \\
v & \approx \frac{h}{2 m_{e} r_{\text {sep }}} & & 0.2 \mathrm{mark} \\
& =1.08 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1} & & 0.3 \mathrm{mark}
\end{aligned}
$$

Correction: If one takes relativistic momentum

$$
\begin{array}{rlrl}
\lambda_{d B} & =2 r_{\text {sep }} & 0.2 \text { mark } \\
p & =\frac{h}{\lambda_{d B}}=\frac{h}{2 r_{\text {sep }}}=\frac{m_{e} v}{\sqrt{1-v^{2} / c^{2}}} & & 0.3 \mathrm{mark} \\
v & =\frac{h}{\sqrt{4 m_{e}^{2} r^{2}+\frac{h^{2}}{c^{2}}}} & & 0.2 \mathrm{mark} \\
& =1.06 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1} & & 0.3 \mathrm{mark}
\end{array}
$$

II.6. Similar to part II.2, at equilibrium

$$
\begin{aligned}
\frac{d E_{G}}{d R} & =-\frac{d E_{e}^{r e l}}{d R} \\
\frac{3}{5} \frac{G M^{2}}{R^{2}} & =\frac{\pi^{2}}{4^{4 / 3}}\left(\frac{3}{\pi}\right)^{5 / 3} \frac{\hbar c}{R^{2}} N_{e}^{4 / 3}
\end{aligned}
$$

For critical mass

$$
M_{c}=\frac{3\left(5^{3} \pi\right)^{1 / 2}}{16 m_{p}^{2}}\left(\frac{\hbar c}{G}\right)^{3 / 2}
$$

Alternatively: Since the total energy

$$
E_{G}+E_{e}^{r e l}=\left(-\frac{3}{5} G M^{2}+\frac{\pi^{2}}{4^{2 / 3}}\left(\frac{3}{\pi}\right)^{5 / 3} \hbar c N_{e}^{4 / 3}\right) \frac{1}{R}
$$

must be minimized for equilibrium, one can argue that if coefficient of $1 / R$ is positive then star would collapse otherwise it would expand.
II.7. For $M>M_{c}$

Expand	
Contract	\checkmark

II.8.

$$
\begin{aligned}
M_{c} & =1.36 \times 10^{31} \mathrm{~kg} \\
& =6.8 M_{S}
\end{aligned}
$$

