

QN	Solution	Marks
	Step 1: Superposition	WIGINS
III.1	$\delta = \omega \Delta t = \frac{\omega d \sin \theta}{c}$	0.4
	$ \mathbf{E}_{1} + \mathbf{E}_{2} ^{2} = E_{0}^{2} \left[\cos^{2} \left(\omega t \right) \left(1 + 2 \cos \delta + \cos^{2} \delta \right) + \sin^{2} \left(\omega t \right) \sin^{2} \delta -2 \cos(\omega t) \left(1 + \cos \delta \right) \sin(\omega t) \sin \delta \right]$	0.2
	Step 2: Time averaging: $\overline{\cos^2 \omega t} = \overline{\sin^2 \omega t} = 1/2$ and $\overline{\sin(\omega t) \cos(\omega t)} = 0$,	0.3
	Step 3: Intensity	0.1
	$I(\theta) = \beta \overline{\left \mathbf{E}_{1} + \mathbf{E}_{2}\right ^{2}} = \beta E_{0}^{2} \left(1 + \cos \delta\right)$	
	The beam 1 has travelled extra optical path = $(\mu - 1) w$.	0.4
III.2	Thus the net phase difference between two beams when they emerge at the angle θ , $\delta = \frac{\omega}{c} \left(d \sin \theta - (\mu - 1) w \right)$	0.2
	and $I(\theta) = \beta E_0^2 (1 + \cos \delta).$	0.4
III.3	The two beams have travelled exactly same paths upto the slits. Thus when they emerge at an angle θ , they have a net phase difference of $\delta = \omega d \sin \theta / c$. Then, notice $ \mathbf{E}_1 + \mathbf{E}_2 ^2 = \left \mathbf{i} \left[\frac{E_0}{\sqrt{2}} \cos(\omega t) + E_0 \cos(\omega t + \delta) \right] + \mathbf{j} \left[\frac{E_0}{\sqrt{2}} \sin(\omega t) \right] \right ^2$	$\begin{array}{c} 0.70 \text{ for} \\ x \text{ com-} \\ \text{ponent} \\ \text{and } 0.3 \\ \text{for } y \end{array}$
	$\left[\sqrt{2} \right] \left[\sqrt{2} \left[\sqrt{2} \right] \left[\sqrt{2} \right] \left[\sqrt{2} \left[\sqrt{2} \left[$	compo- nent
		0.3
	$\left \mathbf{E}_{1}+\mathbf{E}_{2}\right ^{2} = E_{0}^{2}\left[\cos^{2}\left(\omega t\right)\left(\frac{1}{2}+\sqrt{2}\cos\delta+\cos^{2}\delta\right)+\sin^{2}\left(\omega t\right)\sin^{2}\delta\right]$	
	$+2\cos(\omega t)\left(\frac{1}{\sqrt{2}}+\cos\delta\right)\sin(\omega t)\sin\delta\right]+\frac{E_0^2}{2}\cos^2(\omega t)$	
	Thus, after taking time averages, the intesity will be	0.3
	$I(\theta) = \beta E_0^2 \left[1 + \frac{1}{\sqrt{2}} \cos\left(\frac{\omega d \sin\theta}{c}\right) \right]$	

The minimum value of the intensity is $\beta E_0^2 \left[1 - \frac{1}{\sqrt{2}} \right]$. Maximum va	
	alue $0.2{+}0.2$
is $\beta E_0^2 \left[1 + \frac{1}{\sqrt{2}} \right]$	
The electric field at $z = b$ is given b	magnitude
III.4	0.8,
$\mathbf{E}_1(z=b) = \frac{1}{\sqrt{2}} \left[E_0 \cos\left(\omega t - kb - \gamma\right) \right] \mathbf{i}'$	direction
$\sqrt{2}$	0.2
The electric field at $z = b$ is given by	magnitude
The electric field at $z = 0$ is given by	0.3,
$\mathbf{E}_{1}(z=c) = \frac{1}{\sqrt{2}}\cos\gamma E_{0}\cos\left(\omega t - kc - \gamma\right)\mathbf{i}$	direction
$\sqrt{2}$	0.2
	0.5
Phase difference $\alpha = \gamma$. III.5 At equator $e = 0$. Then	$\begin{array}{c c} 0.5 \\ \hline \mathbf{E}: 0.2 \end{array}$
$\begin{bmatrix} 111.5 \\ 111.5 \end{bmatrix}$ At equator $e = 0$. Then	Linear
$\mathbf{E} = \mathbf{E}_{\mathrm{Eq}} = \mathbf{i}' E_0 \cos\left(\omega t\right).$	Polariza-
	tion:
Clearly the beam is linearly polarised along i '.	0.3
III.6 At north pole $e = \pi/4$ and γ can be taken to be 0. Then $\mathbf{i}' = \mathbf{i}$ and \mathbf{i}'	
$\mathbf{j}' = \mathbf{j}$. The electric field	Circular Polariza-
$\mathbf{E} = \mathbf{i} \frac{E_0}{\sqrt{2}} \cos(\omega t) + \mathbf{j} \frac{E_0}{\sqrt{2}} \sin(\omega t)$	tion:
	0.3
or $= \mathbf{i} \frac{E_0}{\sqrt{2}} \cos(\omega t + \gamma) + \mathbf{j} \frac{E_0}{\sqrt{2}} \sin(\omega t + \gamma)$	
which represents circular polarisation.	
III.7 Figure	A1 on x
	axis 0.3 ,
A_2	A2 on
	$\begin{array}{c} \text{the} \\ \text{north} \end{array}$
	pole 0.5 ,
	A3 on
Y Y	equator
$A_1 = 2\gamma$ Equator	0.4,
X A ₁ A ₃ Equator	angle of
	$2\gamma 0.3$
III.8 From figure it is clear that the area of the spherical triangle $A_1 A_2 A_3$ $2\pi \times \left(\frac{2\gamma}{2\pi}\right) = 2\gamma$	A_3 is 0.7
Thus the phase difference α is half the area S of the spherical trian	ngle 0.8
$A_1A_2A_3$ on Poincare sphere i.e. $S = 2\alpha$.	