III.1. [1.0 mark] Let the phase difference between two rays making an angle θ with z direction be δ. Clearly

$$
\begin{equation*}
\delta=\omega \Delta t=\omega d \sin \theta / c \tag{1}
\end{equation*}
$$

Then the intensity is given by

$$
I(\theta)=\beta \overline{\left|\mathbf{E}_{1}+\mathbf{E}_{2}\right|^{2}}
$$

Here

$$
\begin{aligned}
\left|\mathbf{E}_{1}+\mathbf{E}_{2}\right|^{2}= & \left|E_{0} \cos (\omega t)+E_{0} \cos (\omega t+\delta)\right|^{2} \\
= & \left|E_{0} \cos (\omega t)(1+\cos \delta)-E_{0} \sin (\omega t) \sin \delta\right|^{2} \\
= & E_{0}^{2}\left[\cos ^{2}(\omega t)\left(1+2 \cos \delta+\cos ^{2} \delta\right)+\sin ^{2}(\omega t) \sin ^{2} \delta\right. \\
& -2 \cos (\omega t)(1+\cos \delta) \sin (\omega t) \sin \delta]
\end{aligned}
$$

Since $\overline{\cos ^{2} \omega t}=\overline{\sin ^{2} \omega t}=1 / 2$ and $\overline{\sin (\omega t) \cos (\omega t)}=0$, we get the intesity to be

$$
I(\theta)=\beta E_{0}^{2}(1+\cos \delta)
$$

where δ is given by Eq. (1).
(a) Alternate:

$$
\begin{aligned}
\left|\mathbf{E}_{1}+\mathbf{E}_{2}\right|^{2} & =\left|E_{0} \cos (\omega t)+E_{0} \cos (\omega t+\delta)\right|^{2} \\
& =\left|E_{0} \cos (\omega t)(1+\cos \delta)+E_{0} \sin (\omega t) \sin \delta\right|^{2} \\
& =\left|E_{0} A \cos (\omega t-\phi)\right|^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
A^{2} & =(1+\cos \delta)^{2}+\sin ^{2} \delta \\
& =2(1+\cos \delta)
\end{aligned}
$$

Since $\overline{\cos ^{2}(\omega t-\phi)}=1 / 2$, we have

$$
I(\theta)=\frac{\beta}{2} E_{0}^{2} A^{2}=\beta E_{0}^{2}(1+\cos \delta)
$$

where δ is given by Eq. (1).
III.2. [1.0 marks] The beam 1 has travelled extra optical path $=(\mu-1) w$. Thus the net phase difference between two beams when they emerge at the angle θ is

$$
\delta=\frac{\omega}{c}(d \sin \theta-(\mu-1) w)
$$

and $I(\theta)=\beta E_{0}^{2}(1+\cos \delta)$.
III.3. [2.0 marks] The two beams have travelled exactly same paths upto the slits. Thus when they emerge at an angle θ, they have a net phase difference of $\delta=\omega d \sin \theta / c$. Then, notice

$$
\begin{aligned}
\left|\mathbf{E}_{1}+\mathbf{E}_{2}\right|^{2}= & \left|\mathbf{i}\left[\frac{E_{0}}{\sqrt{2}} \cos (\omega t)+E_{0} \cos (\omega t+\delta)\right]+\mathbf{j}\left[\frac{E_{0}}{\sqrt{2}} \sin (\omega t)\right]\right|^{2} \\
= & \left|E_{0} \cos (\omega t)\left(\frac{1}{\sqrt{2}}+\cos \delta\right)+E_{0} \sin (\omega t) \sin \delta\right|^{2}+\frac{E_{0}^{2}}{2} \sin ^{2}(\omega t) \\
= & E_{0}^{2}\left[\cos ^{2}(\omega t)\left(\frac{1}{2}+\sqrt{2} \cos \delta+\cos ^{2} \delta\right)+\sin ^{2}(\omega t) \sin ^{2} \delta\right. \\
& \left.+2 \cos (\omega t)\left(\frac{1}{\sqrt{2}}+\cos \delta\right) \sin (\omega t) \sin \delta\right]+\frac{E_{0}^{2}}{2} \sin ^{2}(\omega t)
\end{aligned}
$$

Thus, after taking time averages, the intesity will be

$$
\begin{aligned}
I(\theta) & =\beta E_{0}^{2}\left[\frac{1}{2}\left(\frac{1}{2}+\sqrt{2} \cos \delta+\cos ^{2} \delta\right)+\frac{1}{2} \sin ^{2} \delta\right]+\beta \frac{E_{0}^{2}}{4} \\
& =\beta E_{0}^{2}\left[1+\frac{1}{\sqrt{2}} \cos \delta\right] \\
& =\beta E_{0}^{2}\left[1+\frac{1}{\sqrt{2}} \cos \left(\frac{\omega d \sin \theta}{c}\right)\right]
\end{aligned}
$$

The maximum value of the intensity is $\beta E_{0}^{2}\left[1+\frac{1}{\sqrt{2}}\right]$.
The minimum value of the intensity is $\beta E_{0}^{2}\left[1-\frac{1}{\sqrt{2}}\right]$.
III.4. [2.0 marks] The electric field at $z=b$ is given by

$$
\begin{aligned}
\mathbf{E}_{1}(z=b) & =\left(\frac{E_{0}}{\sqrt{2}}\left(\cos (\omega t-k b) \mathbf{i} \cdot \mathbf{i}^{\prime}+\sin (\omega t-k b) \mathbf{j} \cdot \mathbf{i}^{\prime}\right)\right) \mathbf{i}^{\prime} \\
& =\frac{1}{\sqrt{2}}\left[E_{0} \cos \gamma \cos (\omega t-k b)+E_{0} \sin \gamma \sin (\omega t-k b)\right] \mathbf{i}^{\prime} \\
& =\frac{1}{\sqrt{2}}\left[E_{0} \cos (\omega t-k b-\gamma)\right] \mathbf{i}^{\prime}
\end{aligned}
$$

and at $z=c$

$$
\begin{aligned}
\mathbf{E}_{1}(z=c) & =\frac{E_{0}}{\sqrt{2}}\left(\cos (\omega t-k c-\gamma) \mathbf{i}^{\prime} \cdot \mathbf{i}\right) \mathbf{i} \\
& =\frac{1}{\sqrt{2}} \cos \gamma E_{0} \cos (\omega t-k c-\gamma) \mathbf{i}
\end{aligned}
$$

Where as

$$
\mathbf{E}_{2}(z=c)=E_{0} \cos (\omega t-k c) \mathbf{i}
$$

So, the net phase difference between beam 1 and beam 2 is now

$$
\text { Phase difference } \alpha=\gamma \text {. }
$$

III.5. [0.5 marks]

(a) At equator $e=0$. Then

$$
\mathbf{E}=\mathbf{E}_{\mathrm{Eq}}=\mathbf{i}^{\prime} E_{0} \cos (\omega t) .
$$

(b) Clearly the beam is linearly polarised along \mathbf{i}^{\prime}.

III.6. [0.5 marks]

(a) At north pole $e=\pi / 4$ and γ can be taken to be 0 . Then $\mathbf{i}^{\prime}=\mathbf{i}$ and $\mathbf{j}^{\prime}=\mathbf{j}$. The electric field

$$
\mathbf{E}_{\mathrm{NP}}=\mathbf{i} \frac{E_{0}}{\sqrt{2}} \cos (\omega t)+\mathbf{j} \frac{E_{0}}{\sqrt{2}} \sin (\omega t)
$$

(b) Which represents circular polarisation.

III.7. [1.5 marks]

III.8. [1.5 mark] From figure it is clear that the area of the spherical triangle $A_{1} A_{2} A_{3}$ is $2 \pi \times\left(\frac{2 \gamma}{2 \pi}\right)=2 \gamma$ and the phase difference was γ. Thus the phase difference is half the area of the spherical triangle $A_{1} A_{2} A_{3}$ on Poincare sphere.
Thus $S=2 \alpha$.
Here, the beam 1 passes through various states of polarization and returns to its original state. Though there has been no additional path difference, the beam has picked up a phase γ with respect to the beam 2. This is called as Pancharatnam phase.

