Theoretical 2: Solution Relativistic Correction on GPS Satelitte

Part A. Single accelerated particle

1. The equation of motion is given by

$$
\begin{align*}
F & =\frac{d}{d t}(\gamma m v) \tag{1}\\
& =\frac{m c \dot{\beta}}{\left(1-\beta^{2}\right)^{\frac{3}{2}}} \\
F & =\gamma^{3} m a, \tag{2}
\end{align*}
$$

where $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}$ and $\beta=\frac{v}{c}$. So the acceleration is given by

$$
\begin{equation*}
a=\frac{F}{\gamma^{3} m} . \tag{3}
\end{equation*}
$$

2. Eq.(3) can be rewritten as

$$
\begin{align*}
c \frac{d \beta}{d t} & =\frac{F}{\gamma^{3} m} \\
\int_{0}^{\beta} \frac{d \beta}{\left(1-\beta^{2}\right)^{\frac{3}{2}}} & =\frac{F}{m c} \int_{0}^{t} d t \\
\frac{\beta}{\sqrt{1-\beta^{2}}} & =\frac{F t}{m c} \tag{4}\\
\beta & =\frac{\frac{F t}{m c}}{\sqrt{1+\left(\frac{F t}{m c}\right)^{2}}} . \tag{5}
\end{align*}
$$

3. Using Eq.(5), we get

$$
\begin{align*}
\int_{0}^{x} d x & =\int_{0}^{t} \frac{F t d t}{m \sqrt{1+\left(\frac{F t}{m c}\right)^{2}}} \\
x & =\frac{m c^{2}}{F}\left(\sqrt{1+\left(\frac{F t}{m c}\right)^{2}}-1\right) . \tag{6}
\end{align*}
$$

4. Consider the following systems, a frame S^{\prime} is moving with respect to another frame S, with velocity u in the x direction. If a particle is moving in the S^{\prime} frame with velocity v^{\prime} also in x direction, then the particle velocity in the S frame is given by

$$
\begin{equation*}
v=\frac{u+v^{\prime}}{1+\frac{v^{\prime}}{c^{2}}} . \tag{7}
\end{equation*}
$$

Theoretical 2: Solution Relativistic Correction on GPS Satelitte

If the particles velocity changes with respect to the S ' frame, then the velocity in the S frame is also change according to

$$
\begin{align*}
& d v=\frac{d v^{\prime}}{1+\frac{u v^{\prime}}{c^{2}}}-\frac{u+v^{\prime}}{\left(1+\frac{u v^{\prime}}{c^{2}}\right)^{2}} \frac{u d v^{\prime}}{c^{2}} \\
& d v=\frac{1}{\gamma^{2}} \frac{d v^{\prime}}{\left(1+\frac{u v^{\prime}}{c^{2}}\right)^{2}} . \tag{8}
\end{align*}
$$

The time in the S^{\prime} frame is t^{\prime}, so the time in the S frame is given by

$$
\begin{equation*}
t=\gamma\left(t^{\prime}+\frac{u x^{\prime}}{c^{2}}\right) \tag{9}
\end{equation*}
$$

so the time change in the S ' frame will give a time change in the S frame as follow

$$
\begin{equation*}
d t=\gamma d t^{\prime}\left(1+\frac{u v^{\prime}}{c^{2}}\right) \tag{10}
\end{equation*}
$$

The acceleration in the S frame is given by

$$
\begin{equation*}
a=\frac{d v}{d t}=\frac{a^{\prime}}{\gamma^{3}} \frac{1}{\left(1+\frac{u v^{\prime}}{c^{2}}\right)^{3}} . \tag{11}
\end{equation*}
$$

If the S ' frame is the proper frame, then by definition the velocity $v^{\prime}=0$. Substitute this to the last equation, we get

$$
\begin{equation*}
a=\frac{a^{\prime}}{\gamma^{3}} . \tag{12}
\end{equation*}
$$

Combining Eq.(3) and Eq.(12), we get

$$
\begin{equation*}
a^{\prime}=\frac{F}{m} \equiv g . \tag{13}
\end{equation*}
$$

5. Eq.(3) can also be rewritten as

$$
\begin{align*}
c \frac{d \beta}{\gamma d \tau} & =\frac{g}{\gamma^{3}} \tag{14}\\
\int_{0}^{\beta} \frac{d \beta}{1-\beta^{2}} & =\frac{g}{c} \int_{0}^{\tau} d \tau \\
\ln \left(\frac{1}{\sqrt{1-\beta^{2}}}+\frac{\beta}{\sqrt{1-\beta^{2}}}\right) & =\frac{g \tau}{c} \tag{15}\\
\sqrt{\frac{1+\beta}{1-\beta}} & =e^{\frac{g \tau}{c}} \\
\beta\left(e^{\frac{g \tau}{c}}+e^{-\frac{g \tau}{c}}\right) & =e^{\frac{g \tau}{c}}-e^{-\frac{g \tau}{c}} \\
\beta & =\tanh \frac{g \tau}{c} . \tag{16}
\end{align*}
$$

Theoretical 2: Solution Relativistic Correction on GPS Satelitte

6. The time dilation relation is

$$
\begin{equation*}
d t=\gamma d \tau . \tag{17}
\end{equation*}
$$

From eq.(16), we have

$$
\begin{equation*}
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\cosh \frac{g \tau}{c} . \tag{18}
\end{equation*}
$$

Combining this equations, we get

$$
\begin{align*}
\int_{0}^{t} d t & =\int_{0}^{\tau} d \tau \cosh \frac{g \tau}{c} \\
t & =\frac{c}{g} \sinh \frac{g \tau}{c} . \tag{19}
\end{align*}
$$

Part B. Flight Time

1. When the clock in the origin time is equal to t_{0}, it emits a signal that contain the information of its time. This signal will arrive at the particle at time t, while the particle position is at $x(t)$. We have

$$
\begin{align*}
c\left(t-t_{0}\right) & =x(t) \tag{20}\\
t-t_{0} & =\frac{c}{g}\left(\sqrt{1+\left(\frac{g t}{c}\right)^{2}}-1\right) \\
t & =\frac{t_{0}}{2} \frac{2-\frac{g t_{0}}{c}}{1-\frac{g t_{0}}{c}} . \tag{21}
\end{align*}
$$

When the information arrive at the particle, the particle's clock has a reading according to eq.(19). So we get

$$
\begin{align*}
\frac{c}{g} \sinh \frac{g \tau}{c} & =\frac{t_{0}}{2} \frac{2-\frac{g t_{0}}{c}}{1-\frac{g t_{0}}{c}} \\
0 & =\frac{1}{2}\left(\frac{g t_{0}}{c}\right)^{2}-\frac{g t_{0}}{c}\left(1+\sinh \frac{g \tau}{c}\right)+\sinh \frac{g \tau}{c} \\
\frac{g t_{0}}{c} & =1+\sinh \frac{g \tau}{c} \pm \cosh \frac{g \tau}{c} \tag{22}
\end{align*}
$$

Using initial condition $t=0$ when $\tau=0$, we choose the negative sign

$$
\begin{align*}
\frac{g t_{0}}{c} & =1+\sinh \frac{g \tau}{c}-\cosh \frac{g \tau}{c} \\
t_{0} & =\frac{c}{g}\left(1-e^{-\frac{g \tau}{c}}\right) . \tag{23}
\end{align*}
$$

As $\tau \rightarrow \infty, t_{0}=\frac{c}{g}$. So the clock reading will freeze at this value.

Theoretical 2: Solution Relativistic Correction on GPS Satelitte

2. When the particles clock has a reading τ_{0}, its position is given by eq.(6), and the time t_{0} is given by eq.(19). Combining this two equation, we get

$$
\begin{equation*}
x=\frac{c^{2}}{g}\left(\sqrt{1+\sinh ^{2} \frac{g \tau_{0}}{c}}-1\right) . \tag{24}
\end{equation*}
$$

The particle's clock reading is then sent to the observer at the origin. The total time needed for the information to arrive is given by

$$
\begin{align*}
t & =\frac{c}{g} \sinh \frac{g \tau_{0}}{c}+\frac{x}{c} \tag{25}\\
& =\frac{c}{g}\left(\sinh \frac{g \tau_{0}}{c}+\cosh \frac{g \tau_{0}}{c}-1\right) \\
t & =\frac{c}{g}\left(e^{\frac{g \tau_{0}}{c}}-1\right) \tag{26}\\
\tau_{0} & =\frac{c}{g} \ln \left(\frac{g t}{c}+1\right) . \tag{27}
\end{align*}
$$

The time will not freeze.

Part C. Minkowski Diagram

1. The figure below show the setting of the problem.

The line AB represents the stick with proper length equal L in the S frame.
The length AB is equal to $\sqrt{\frac{1-\beta^{2}}{1+\beta^{2}}} L$ in the S^{\prime} frame.
The stick length in the S ' frame is represented by the line AC

Figure 1: Minkowski Diagram

$$
\begin{equation*}
\mathrm{AC}=\frac{\mathrm{AB}}{\cos \theta}=\sqrt{1-\beta^{2}} L \tag{28}
\end{equation*}
$$

2. The position of the particle is given by eq.(6).

Theoretical 2: Solution Relativistic Correction on GPS Satelitte

Figure 2: Minkowski Diagram

Part D. Two Accelerated Particles

1. $\tau_{B}=\tau_{A}$.
2. From the diagram, we have

$$
\begin{equation*}
\tan \theta=\beta=\frac{c t_{2}-c t_{1}}{x_{2}-x_{1}} . \tag{29}
\end{equation*}
$$

Using eq.(6), and eq.(19) along with the initial condition, we get

$$
\begin{align*}
& x_{1}=\frac{c^{2}}{g}\left(\cosh \frac{g \tau_{1}}{c}-1\right) \tag{30}\\
& x_{2}=\frac{c^{2}}{g}\left(\cosh \frac{g \tau_{2}}{c}-1\right)+L \tag{31}
\end{align*}
$$

Using eq.(16), eq.(19), eq.(30) and eq.(31), we obtain

$$
\begin{align*}
\tanh \frac{g \tau_{1}}{c} & =\frac{c\left(\frac{c}{g} \sinh \frac{g \tau_{2}}{c}-\frac{c}{g} \sinh \frac{g \tau_{1}}{c}\right)}{L+\frac{c^{2}}{g}\left(\cosh \frac{g \tau_{2}}{c}-1\right)-\frac{c^{2}}{g}\left(\cosh \frac{g \tau_{1}}{c}-1\right)} \\
& =\frac{\sinh \frac{g \tau_{2}}{c}-\sinh \frac{g \tau_{1}}{c}}{\frac{g L}{c^{2}}+\cosh \frac{g \tau_{2}}{c}-\cosh \frac{g \tau_{1}}{c}} \\
\frac{g L}{c^{2}} \sinh \frac{g \tau_{1}}{c} & =\sinh \frac{g \tau_{2}}{c} \cosh \frac{g \tau_{1}}{c}-\cosh \frac{g \tau_{2}}{c} \sinh \frac{g \tau_{1}}{c} \\
\frac{g L}{c^{2}} \sinh \frac{g \tau_{1}}{c} & =\sinh \frac{g}{c}\left(\tau_{2}-\tau_{1}\right) . \tag{32}
\end{align*}
$$

So $C_{1}=\frac{g L}{c^{2}}$.

Theoretical 2: Solution Relativistic Correction on GPS Satelitte

Figure 3: Minkowski Diagram for two particles
3. From the length contraction, we have

$$
\begin{align*}
L^{\prime} & =\frac{x_{2}-x_{1}}{\gamma_{1}} \tag{33}\\
\frac{d L^{\prime}}{d \tau_{1}} & =\left(\frac{d x_{2}}{d \tau_{2}} \frac{d \tau_{2}}{d \tau_{1}}-\frac{d x_{1}}{d \tau_{1}}\right) \frac{1}{\gamma_{1}}-\frac{x_{2}-x_{1}}{\gamma_{1}^{2}} \frac{d \gamma_{1}}{d \tau_{1}} . \tag{34}
\end{align*}
$$

Take derivative of eq.(30), eq.(31) and eq.(32), we get

$$
\begin{align*}
\frac{d x_{1}}{d \tau_{1}} & =c \sinh \frac{g \tau_{1}}{c} \tag{35}\\
\frac{d x_{2}}{d \tau_{2}} & =c \sinh \frac{g \tau_{2}}{c}, \tag{36}\\
\frac{g L}{c^{2}} \cosh \frac{g \tau_{1}}{c} & =\cosh \frac{g}{c}\left(\tau_{2}-\tau_{1}\right)\left(\frac{d \tau_{2}}{d \tau_{1}}-1\right) . \tag{37}
\end{align*}
$$

The last equation can be rearrange to get

$$
\begin{equation*}
\frac{d \tau_{2}}{d \tau_{1}}=\frac{\frac{g L}{c^{2}} \cosh \frac{g \tau_{1}}{c}}{\cosh \frac{g}{c}\left(\tau_{2}-\tau_{1}\right)}+1 . \tag{38}
\end{equation*}
$$

Theoretical 2: Solution Relativistic Correction on GPS Satelitte

From eq.(29), we have

$$
\begin{equation*}
x_{2}-x_{1}=\frac{c\left(t_{2}-t_{1}\right)}{\beta_{1}}=\frac{c}{\tanh \frac{g \tau_{1}}{c}}\left(\frac{c}{g} \sinh \frac{g \tau_{2}}{c}-\frac{c}{g} \sinh \frac{g \tau_{1}}{c}\right) . \tag{39}
\end{equation*}
$$

Combining all these equations, we get

$$
\begin{align*}
\frac{d L_{1}}{d \tau_{1}}= & \left(c \sinh \frac{g \tau_{2}}{c} \frac{\frac{g L}{c^{2}} \cosh \frac{g \tau_{1}}{c}}{\cosh \frac{g}{c}\left(\tau_{2}-\tau_{1}\right)}+c \sinh \frac{g \tau_{2}}{c}-c \sinh \frac{g \tau_{1}}{c}\right) \frac{1}{\cosh \frac{g \tau_{1}}{c}} \\
& -\frac{c^{2}}{g}\left(\sinh \frac{g \tau_{2}}{c}-\sinh \frac{g \tau_{1}}{c}\right) \frac{1}{\tanh \frac{g \tau_{1}}{c}} \frac{1}{\cosh ^{2} \frac{g \tau_{1}}{c} \frac{g}{c} \sinh \frac{g \tau_{1}}{c}} \\
\frac{d L_{1}}{d \tau_{1}}= & \frac{g L}{c} \frac{\sinh \frac{g \tau_{2}}{c}}{\cosh \frac{g}{c}\left(\tau_{2}-\tau_{1}\right)} . \tag{40}
\end{align*}
$$

So $C_{2}=\frac{g L}{c}$.

Part E. Uniformly Accelerated Frame

1. Distance from a certain point x_{p} according to the particle's frame is

$$
\begin{align*}
L^{\prime} & =\frac{x-x_{p}}{\gamma} \tag{41}\\
L^{\prime} & =\frac{\frac{c^{2}}{g_{1}}\left(\cosh \frac{g_{1} \tau}{c}-1\right)-x_{p}}{\cosh \frac{g_{1} \tau}{c}} \\
L^{\prime} & =\frac{c^{2}}{g_{1}}-\frac{\frac{c^{2}}{g_{1}}+x_{p}}{\cosh \frac{g_{1} \tau}{c}} . \tag{42}
\end{align*}
$$

For L^{\prime} equal constant, we need $x_{p}=-\frac{c^{2}}{g_{1}}$.
2. First method: If the distance in the S ' frame is constant $=L$, then in the S frame the length is

$$
\begin{equation*}
L_{s}=L \sqrt{\frac{1+\beta^{2}}{1-\beta^{2}}} \tag{43}
\end{equation*}
$$

So the position of the second particle is

$$
\begin{align*}
x_{2} & =x_{1}+L_{s} \cos \theta \tag{44}\\
& =\frac{c^{2}}{g_{1}}\left(\sqrt{1+\left(\frac{g_{1} t_{1}}{c}\right)^{2}}-1\right)+L \sqrt{1+\left(\frac{g_{1} t_{1}}{c}\right)} \\
x_{2} & =\left(\frac{c^{2}}{g_{1}}+L\right) \sqrt{1+\left(\frac{g_{1} t_{1}}{c}\right)^{2}}-\frac{c^{2}}{g_{1}} . \tag{45}
\end{align*}
$$

Theoretical 2: Solution Relativistic Correction on GPS Satelitte

Figure 4: Minkowski Diagram for two particles

The time of the second particle is

$$
\begin{align*}
c t_{2} & =c t_{1}+L_{s} \sin \theta \tag{46}\\
& =c t_{1}+L \sqrt{\frac{1+\beta^{2}}{1-\beta^{2}}} \frac{\beta}{\sqrt{1+\beta^{2}}} \\
c t_{2} & =t_{1}\left(c+\frac{g_{1} L}{c}\right) . \tag{47}
\end{align*}
$$

Substitute eq.(47) to eq.(45) to get

$$
\begin{align*}
& x_{2}=\left(\frac{c^{2}}{g_{1}}+L\right) \sqrt{1+\left(\frac{g_{1}}{c} \frac{t_{2}}{1+\frac{g_{1} L}{c^{2}}}\right)^{2}}-\frac{c^{2}}{g_{1}} \\
& x_{2}=\left(\frac{c^{2}}{g_{1}}+L\right) \sqrt{1+\left(\frac{g_{1}}{1+\frac{g_{1} L}{c^{2}}} \frac{t_{2}}{c}\right)^{2}}-\frac{c^{2}}{g_{1}} \tag{48}
\end{align*}
$$

From the last equation, we can identify

$$
\begin{equation*}
g_{2} \equiv \frac{g_{1}}{1+\frac{g_{1} L}{c^{2}}} . \tag{49}
\end{equation*}
$$

Theoretical 2: Solution Relativistic Correction on GPS Satelitte

As for confirmation, we can subsitute this relation to the second particle position to get

$$
\begin{equation*}
x_{2}=\frac{c^{2}}{g_{2}} \sqrt{1+\left(\frac{g_{2} t_{2}}{c}\right)^{2}}-\frac{c^{2}}{g_{1}} . \tag{50}
\end{equation*}
$$

Second method: In this method, we will choose g_{2} such that the special point like the one descirbe in the question 1 is exactly the same as the similar point for the proper acceleration g_{1}.
For first particle, we have $x_{p 1} g_{1}=c^{2}$
For second particle, we have $\left(L+x_{p 1}\right) g_{2}=c^{2}$
Combining this two equations, we get

$$
\begin{align*}
g_{2} & =\frac{c^{2}}{L+\frac{c^{2}}{g_{1}}} \\
g_{2} & =\frac{g_{1}}{1+\frac{g_{1} L}{c^{2}}} . \tag{51}
\end{align*}
$$

3. The relation between the time in the two particles is given by eq.(47)

$$
\begin{align*}
t_{2} & =t_{1}\left(1+\frac{g_{1} L}{c^{2}}\right) \\
\frac{c^{2}}{g_{2}} \sinh \frac{g_{2} \tau_{2}}{c} & =\frac{c^{2}}{g_{1}} \sinh \frac{g_{1} \tau_{1}}{c}\left(1+\frac{g_{1} L}{c^{2}}\right) \\
\sinh \frac{g_{2} \tau_{2}}{c} & =\sinh \frac{g_{1} \tau_{1}}{c} \\
g_{2} \tau_{2} & =g_{1} \tau_{1} \tag{52}\\
\frac{d \tau_{2}}{d \tau_{1}} & =\frac{g_{1}}{g_{2}}=1+\frac{g_{1} L}{c^{2}} . \tag{53}
\end{align*}
$$

Part F. Correction for GPS

1. From Newtons Law

$$
\begin{align*}
\frac{G M m}{r^{2}} & =m \omega^{2} r \tag{54}\\
r & =\left(\frac{g R^{2} T^{2}}{4 \pi^{2}}\right)^{\frac{1}{3}} \tag{55}\\
r & =2.66 \times 10^{7} \mathrm{~m} .
\end{align*}
$$

The velocity is given by

$$
\begin{align*}
v & =\omega r=\left(\frac{2 \pi g R^{2}}{T}\right)^{\frac{1}{3}} \tag{56}\\
& =3.87 \times 10^{3} \mathrm{~m} / \mathrm{s} .
\end{align*}
$$

Theoretical 2: Solution Relativistic Correction on GPS Satelitte

2. The general relativity effect is

$$
\begin{align*}
& \frac{d \tau_{g}}{d t}=1+\frac{\Delta U}{m c^{2}} \tag{57}\\
& \frac{d \tau_{g}}{d t}=1+\frac{g R^{2}}{c^{2}} \frac{R-r}{R r} . \tag{58}
\end{align*}
$$

After one day, the difference is

$$
\begin{align*}
\Delta \tau_{g} & =\frac{g R^{2}}{c^{2}} \frac{R-r}{R r} \Delta T \tag{59}\\
& =4.55 \times 10^{-5} \mathrm{~s} .
\end{align*}
$$

The special relativity effect is

$$
\begin{align*}
\frac{d \tau_{s}}{d t} & =\sqrt{1-\frac{v^{2}}{c^{2}}} \tag{60}\\
& =\sqrt{1-\left(\left(\frac{2 \pi g R^{2}}{T}\right)^{\frac{2}{3}}\right) \frac{1}{c^{2}}} \\
& \approx 1-\frac{1}{2}\left(\left(\frac{2 \pi g R^{2}}{T}\right)^{\frac{2}{3}}\right) \frac{1}{c^{2}} . \tag{61}
\end{align*}
$$

After one day, the difference is

$$
\begin{align*}
\Delta \tau_{s} & =-\frac{1}{2}\left(\left(\frac{2 \pi g R^{2}}{T}\right)^{\frac{2}{3}}\right) \frac{1}{c^{2}} \Delta T \tag{62}\\
& =-7.18 \times 10^{-6} \mathrm{~s} .
\end{align*}
$$

The satelite's clock is faster with total $\Delta \tau=\Delta \tau_{g}+\Delta \tau_{s}=3.83 \times 10^{-5} \mathrm{~s}$.
3. $\Delta L=c \Delta \tau=1.15 \times 10^{4} \mathrm{~m}=11.5 \mathrm{~km}$.

