Theoretical 3: Solution Physics of Spin

Part A. Larmor Precession

1. From the two equations given in the text, we obtain the relation

$$
\begin{equation*}
\frac{d \boldsymbol{\mu}}{d t}=-\gamma \boldsymbol{\mu} \times \mathbf{B} . \tag{1}
\end{equation*}
$$

Taking the dot product of eq (1). with $\boldsymbol{\mu}$, we can prove that

$$
\begin{align*}
\boldsymbol{\mu} \cdot \frac{d \boldsymbol{\mu}}{d t} & =-\gamma \boldsymbol{\mu} \cdot(\boldsymbol{\mu} \times \mathbf{B}) \\
\frac{d|\boldsymbol{\mu}|^{2}}{d t} & =0 \\
\mu=|\boldsymbol{\mu}| & =\text { const. } \tag{2}
\end{align*}
$$

Taking the dot product of eq. (1) with \mathbf{B}, we also prove that

$$
\begin{align*}
\mathbf{B} \cdot \frac{d \boldsymbol{\mu}}{d t} & =-\gamma \mathbf{B} \cdot(\boldsymbol{\mu} \times \mathbf{B}), \\
\mathbf{B} \cdot \frac{d \boldsymbol{\mu}}{d t} & =0, \\
\mathbf{B} \cdot \boldsymbol{\mu} & =\text { const. } \tag{3}
\end{align*}
$$

An acute reader will notice that our master equation in (1) is identical to the equation of motion for a charged particle in a magnetic field

$$
\begin{equation*}
\frac{d \mathbf{v}}{d t}=\frac{q}{m} \mathbf{v} \times \mathbf{B} . \tag{4}
\end{equation*}
$$

Hence, the same argument for a charged particle in magnetic field can be applied in this case.
2. For a magnetic moment making an angle of ϕ with \mathbf{B},

$$
\begin{align*}
\frac{d \boldsymbol{\mu}}{d t} & =-\gamma \boldsymbol{\mu} \times \mathbf{B}, \\
|\boldsymbol{\mu}| \sin \phi \frac{d \theta}{d t} & =\gamma|\boldsymbol{\mu}| B_{0} \sin \phi, \\
\omega_{0}=\frac{d \theta}{d t} & =\gamma B_{0} . \tag{5}
\end{align*}
$$

Part B. Rotating frame

1. Using the relation given in the text, it is easily shown that

$$
\begin{align*}
\left(\frac{d \boldsymbol{\mu}}{d t}\right)_{\mathrm{rot}} & =\left(\frac{d \boldsymbol{\mu}}{d t}\right)_{\mathrm{lab}}-\boldsymbol{\omega} \times \boldsymbol{\mu} \\
& =-\gamma \boldsymbol{\mu} \times \mathbf{B}-\omega \mathbf{k}^{\prime} \times \boldsymbol{\mu} \\
& =-\gamma \boldsymbol{\mu} \times\left(\mathbf{B}-\frac{\omega}{\gamma} \mathbf{k}^{\prime}\right) \\
& =-\gamma \boldsymbol{\mu} \times \mathbf{B}_{\text {eff }} . \tag{6}
\end{align*}
$$

Note that \mathbf{k} is equal to \mathbf{k}^{\prime} as observed in the rotating frame.

Theoretical 3: Solution Physics of Spin

2. The new precession frequency as viewed on the rotating frame S^{\prime} is

$$
\begin{align*}
\vec{\Delta} & =\left(\omega_{0}-\omega\right) \mathbf{k}^{\prime}, \\
\Delta & =\gamma B_{0}-\omega . \tag{7}
\end{align*}
$$

3. Since the magnetic field as viewed in the rotating frame is $\mathbf{B}=B_{0} \mathbf{k}^{\prime}+b \mathbf{i}^{\prime}$,

$$
\mathbf{B}_{\mathrm{eff}}=\mathbf{B}-\omega / \gamma \mathbf{k}^{\prime}=\left(B_{0}-\frac{\omega}{\gamma}\right) \mathbf{k}^{\prime}+b \mathbf{i}^{\prime},
$$

and

$$
\begin{align*}
\Omega & =\gamma\left|\mathbf{B}_{\mathrm{eff}}\right| \\
& =\gamma \sqrt{\left(B_{0}-\frac{\omega}{\gamma}\right)^{2}+b^{2}} \tag{8}
\end{align*}
$$

4. In this case, the effective magnetic field becomes

$$
\begin{align*}
\mathbf{B}_{\mathrm{eff}} & =\mathbf{B}-\omega / \gamma \mathbf{k}^{\prime} \\
& =\left(B_{0}-\frac{\omega}{\gamma}\right) \mathbf{k}^{\prime}+b\left(\cos 2 \omega t \mathbf{i}^{\prime}-\sin 2 \omega t \mathbf{j}^{\prime}\right) \tag{9}
\end{align*}
$$

which has a time average of $\overline{\mathbf{B}_{\text {eff }}}=\left(B_{0}-\frac{\omega}{\gamma}\right) \mathbf{k}^{\prime}$.

Part C. Rabi oscillation

1. The oscillating field can be considered as a superposition of two oppositely rotating field:

$$
2 b \cos \omega_{0} t \mathbf{i}=b\left(\cos \omega_{0} t \mathbf{i}+\sin \omega_{0} t \mathbf{j}\right)+b\left(\cos \omega_{0} t \mathbf{i}-\sin \omega_{0} t \mathbf{j}\right),
$$

which gives an effective field of (with $\omega=\omega_{0}=\gamma B_{0}$):

$$
\mathbf{B}_{\mathrm{eff}}=\left(B_{0}-\frac{\omega}{\gamma}\right) \mathbf{k}^{\prime}+b \mathbf{i}^{\prime}+b\left(\cos 2 \omega_{0} t \mathbf{i}^{\prime}-\sin 2 \omega_{0} t \mathbf{j}^{\prime}\right)
$$

Since $\omega_{0} \gg \gamma b$, the rotation of the term $b\left(\cos 2 \omega_{0} t \mathbf{i}^{\prime}-\sin 2 \omega_{0} t \mathbf{j}^{\prime}\right)$ is so fast compared to the frequency γb. This means that we can take the approximation

$$
\begin{equation*}
\mathbf{B}_{\mathrm{eff}} \approx\left(B_{0}-\frac{\omega}{\gamma}\right) \mathbf{k}^{\prime}+b \mathbf{i}^{\prime}=b \mathbf{i}^{\prime} \tag{10}
\end{equation*}
$$

where the magnetic moment precesses with frequency $\Omega=\gamma b$.
As $\Omega=\gamma b \ll \omega_{0}$, the magnetic moment does not "feel" the rotating term $b\left(\cos 2 \omega_{0} t \mathbf{i}^{\prime}-\sin 2 \omega_{0} \mathbf{t j}^{\prime}\right)$ which averaged to zero.

Theoretical 3: Solution Physics of Spin

2. Since the angle α that $\boldsymbol{\mu}$ makes with $\mathbf{B}_{\text {eff }}$ stays constant and $\boldsymbol{\mu}$ is initially oriented along the z axis, α is also the angle between $\mathbf{B}_{\text {eff }}$ and the z axis which is

$$
\begin{equation*}
\tan \alpha=\frac{b}{B_{0}-\frac{\omega}{\gamma}} \tag{11}
\end{equation*}
$$

From the geometry of the system, we can show that $\left(\cos \theta=\mu_{z} / \mu\right)$:

$$
\begin{aligned}
2 \mu \sin \frac{\theta}{2} & =2 \mu \sin \alpha \sin \frac{\Omega t}{2} \\
\sin ^{2} \frac{\theta}{2} & =\sin ^{2} \alpha \sin ^{2} \frac{\Omega t}{2} \\
\frac{1-\cos \theta}{2} & =\sin ^{2} \alpha \frac{1-\cos \Omega t}{2} \\
\cos \theta & =1-\sin ^{2} \alpha+\sin ^{2} \alpha \cos \Omega t \\
\cos \theta & =\cos ^{2} \alpha+\sin ^{2} \alpha \cos \Omega t
\end{aligned}
$$

So, the projected magnetic moment along the z axis is $\mu_{z}(t)=\mu \cos \theta$ and the magnetization is

$$
\begin{equation*}
M=N \mu_{z}=N \mu\left(\cos ^{2} \alpha+\sin ^{2} \alpha \cos \Omega t\right) \tag{12}
\end{equation*}
$$

Note that the magnetization does not depend on the reference frame S or S^{\prime} (μ_{z} has the same value viewed in both frames).
Taking $\omega=\omega_{0}=\gamma B_{0}$, the angle α is 90° and $M=N \mu \cos \Omega t$.
3. From the relations

$$
\begin{aligned}
P_{\uparrow}-P_{\downarrow} & =\frac{\mu_{z}}{\mu}=\cos \theta \\
P_{\uparrow}+P_{\downarrow} & =1
\end{aligned}
$$

Theoretical 3: Solution Physics of Spin

we obtain the results $\left(\omega=\omega_{0}\right)$

$$
\begin{align*}
P_{\downarrow} & =\frac{1-\cos \theta}{2} \\
& =\frac{1-\cos ^{2} \alpha-\sin ^{2} \alpha \cos \Omega t}{2} \\
& =\sin ^{2} \alpha \frac{1-\cos \Omega t}{2} \\
& =\frac{b^{2}}{\left(B_{0}-\frac{\omega}{\gamma}\right)^{2}+b^{2}} \sin ^{2} \frac{\Omega t}{2} \\
& =\sin ^{2} \frac{\Omega t}{2}, \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
P_{\uparrow}=\frac{b^{2}}{\left(B_{0}-\frac{\omega}{\gamma}\right)^{2}+b^{2}} \cos ^{2} \frac{\Omega t}{2}=\cos ^{2} \frac{\Omega t}{2} . \tag{14}
\end{equation*}
$$

Part D. Measurement incompatibility

1. In the x direction, the uncertainty in position due to the screen opening is Δx. According to the uncertainty principle, the atom momentum uncertainty Δp_{x} is given by

$$
\Delta p_{x} \approx \frac{\hbar}{\Delta x},
$$

which translates into an uncertainty in the x velocity of the atom,

$$
v_{x} \approx \frac{\hbar}{m \Delta x} .
$$

Consequently, during the time of flight t of the atoms through the device, the uncertainty in the width of the beam will grow by an amount δx given by

$$
\delta x=\Delta v_{x} t \approx \frac{\hbar}{m \Delta x} t
$$

Theoretical 3: Solution Physics of Spin

So, the width of the beams is growing linearly in time. Meanwhile, the two beams are separating at a rate determined by the force F_{x} and the separation between the beams after a time t becomes

$$
d_{x}=2 \times \frac{1}{2} \frac{F_{x}}{m} t^{2}=\frac{1}{m}\left|\mu_{x}\right| C t^{2} .
$$

In order to be able to distinguish which beam a particle belongs to, the separation of the two beams must be greater than the widths of the beams; otherwise the two beams will overlap and it will be impossible to know what the x component of the atom spin is. Thus, the condition must be satisfied is

$$
\begin{align*}
d_{x} & >\delta x, \\
\frac{1}{m}\left|\mu_{x}\right| C t^{2} & >\frac{\hbar}{m \Delta x} t, \\
\frac{1}{\hbar}\left|\mu_{x}\right| \Delta x C t & \gg . \tag{15}
\end{align*}
$$

2. As the atoms pass through the screen, the variation of magnetic field strength across the beam width experienced by the atoms is

$$
\Delta B=\Delta x \frac{d B}{d x}=C \Delta x
$$

This means the atoms will precess at rates covering a range of values $\Delta \omega$ given by

$$
\Delta \omega=\gamma \Delta B=\frac{\mu_{z}}{\hbar} \Delta B=\frac{\left|\mu_{x}\right|}{\hbar} C \Delta x
$$

and, if previous condition in measuring μ_{x} is satisfied,

$$
\begin{equation*}
\Delta \omega t \gg 1 . \tag{16}
\end{equation*}
$$

In other words, the spread in the angle $\Delta \omega t$ through which the magnetic moments precess is so large that the z component of the spin is completely randomized or the measurement uncertainty is very large.

