15 ${ }^{\text {TH }}$ ASIAN PHYSICS OLYMPIAD
11-18 MAY 2014, SINGAPORE

Experimental Competition
May 15, 2014
0830-1330 hrs

Marking Rubric

Country:	Sample Solution	Student Code:	Sample Solution

Experiment A:

A1. In the space below, derive an equation for λ_{s} in terms of $(b, g$, $m, n_{w}, n_{g}, L, \lambda_{\text {air }}$, and D_{m}) under small angle approximation condition.
(b)

Given,
Also we know,

$$
\begin{equation*}
d \sin \theta_{w}=i \lambda_{w} \tag{1}
\end{equation*}
$$

Raman and Nath

$$
\begin{equation*}
n_{w} \lambda_{w}=n_{\text {air }} \lambda_{\text {air }} \tag{2}
\end{equation*}
$$

$\begin{array}{ll}\text { Raman and Nath condition: } & d=\lambda_{s} \\ \text { Snell's Law } & \frac{n_{g}}{n_{w}}=\frac{\sin \theta_{w}}{\sin \theta_{g}}=\frac{\lambda_{w}}{\lambda_{g}}\end{array}$
Snell's Law: glass to air $\quad \frac{n_{g}}{n_{\text {air }}}=\frac{\sin \theta_{\text {air }}}{\sin \theta_{g}}=\frac{\lambda_{\text {air }}}{\lambda_{g}}$
From above Figure $\quad D_{m}=2\left(b \tan \theta_{w}+g \tan \theta_{g}+\right.$
$L \tan \theta_{\text {air }}$)
Using small angle approximation:

$$
\tan \theta_{w}=\sin \theta_{w} ; \tan \theta_{g}=\sin \theta_{g} ; \tan \theta_{\text {air }}=\sin \theta_{\text {air }}
$$

Fron Eqns (6) and (7) $D_{m}=2\left(b \sin \theta_{w}+g \sin \theta_{g}+L \sin \theta_{\text {air }}\right)$
Writing $\sin \theta_{g}$ and $\sin \theta_{\text {air }}$ in terms of $\sin \theta_{w}$ from equations (4) and (5) $\quad D_{m}=2\left(b+g \frac{n_{w}}{n_{g}}+L \frac{n_{w}}{n_{\text {air }}}\right) \sin \theta_{w}$
Substituting $\sin \theta_{w}$ from equations (1), (2) and (3) and counting the total number of fringes m in distance D_{m} on the screen

$$
\begin{equation*}
D_{m}=\left(b+g \frac{n_{w}}{n_{g}}+L \frac{n_{w}}{n_{\text {air }}}\right)(m-1) \frac{n_{\text {air }}}{n_{w}} \frac{\lambda_{\text {air }}}{\lambda_{s}} \tag{9}
\end{equation*}
$$

Note that $m=2 i+1$
Rearranging the terms to get λ_{s}

$$
\begin{gather*}
\lambda_{s}=\left(\frac{b}{n_{w}}+\frac{g}{n_{g}}+\frac{L}{n_{\text {air }}}\right)(m-1) \frac{n_{\text {air }} \lambda_{\text {air }}}{D_{m}} \tag{10}\\
A=\left(\frac{b}{n_{w}}+\frac{g}{n_{g}}+\frac{L}{n_{\text {air }}}\right)
\end{gather*}
$$

Total $=1.5$

If final answer is the same, then get full mark

0.1 for Eqn (2)

0.1 for Eqn (4)

0.1 for Eqn (5)

0.4 for Writing the correction Eqn (6)
0.1 for Small angle approximation
0.2 for expressing all angles to θ_{w}
0.1 for relating i to m.
0.3 for λ_{s} expression

0.1 for A

Country:	Sample Solution	Student Code:	Sample Solution

Country:	Sample Solution	Student Code:	Sample Solution

A2. Attach this Answer Sheet to the Screen (F) and mark the fringes in the space below.

Total : 2.5

1.6 for Patterns

1.6 for ≥ 3 patterns
1.4 for 2 patterns
1.2 for 1 pattern

Note -

The maximum marks will be reduced to 50% of the marks mentioned above if the number of fringes marked is less than 10 on average; and 25% for less than 5 marked fringes.

0.9 for complete table

-0.1 each uncertainty missing
-0.1 each unit missing
-0.1 T missing
-0.2 m missing
$-0.2 D_{m}$ missing

Note: the marks allocated for the table will be given if the values are implicitly observed in the results

\section*{| Country: | Sample Solution | Student Code: | Sample Solution |
| :--- | :--- | :--- | :--- |}

A3. Measure and record all relevant parameters in the space below and calculate the wavelength of sound, λ_{s}, in mineral water.
$n_{w}=$ refractive index of water $=1.333 \pm 0.007$
$n_{\text {air }}=$ refractive index of air $=1.000 \pm 0.0003$
$n_{g}=$ refractive index of glass $=1.50 \pm 0.005$
$\lambda_{\text {air }}=$ the wavelength of laser light in air $=660 \pm 3 \mathrm{~nm}$
Thickness of the wall of glass cell: $g=5.05 \pm 0.05 \mathrm{~mm}$

	$b(\mathrm{~cm})$ $\pm 0.2 \mathrm{~cm}$	$L(\mathrm{~cm})$ $\pm 0.5 \mathrm{~cm}$	$D(\mathrm{~cm})$ $\pm 0.05 \mathrm{~cm}$	m	$\lambda_{s}(\mathrm{~m})$ $\times 10^{-4}$
Pattern 1	5	368.5	7.5	26	8.20
Pattern 2	5.5	235	9.6	51	8.23
Pattern 3	7.1	384.6	12.5	41	8.24

$\lambda_{s}=\frac{(8.20+8.23+8.24) \times 10^{-4}}{3} \mathrm{~m}=8.22 \times 10^{-4} \mathrm{~m}$

$$
\begin{array}{l|l}
\hline \lambda_{\mathrm{s}}= & 8.22 \times 10^{-4} \mathrm{~m} \\
\hline
\end{array}
$$

Total : 1.0
0.1 Right value of g (between 4.9 to 5.1 mm)
0.4 Tabulation of b, L
0.5 for value of λ_{s}

Note - λ_{s} is Temperature dependent
(0.5 : within 5% of value of λ_{s} at temperature noted by Organizing Committee in Exam Hall)
(0.3: for outside 5% but within 10% of value of λ_{s} at noted temperature)
(0.1: for outside 10% but within 20% of value of λ_{s} at noted temperature)

0 otherwise
Note: If λ_{s} is wrong due to totally wrong A, then team leader check for value from correct formula and award from above guidelines for λ_{s}, but with a further deduction of 0.1 mark.
-0.1 each uncertainty missing
-0.1 each unit missing
-0.1 b missing
-0.1 L missing
-0.2 for $L<0.5 \mathrm{~m}$

Country:	Sample Solution	Student Code:	Sample Solution

A4.	Calculate and record the frequency of ultrasonic waves, f_{s}, in mineral water. From the graph, Speed of ultrasound in water at $22{ }^{\circ} \mathrm{C}$ is $1484 \pm 4 \mathrm{~m} \mathrm{~s}^{-1}$ Frequency of ultrasound: $\quad f_{s}=\frac{v_{s}}{\lambda_{s}}=\frac{1484}{8.22 \times 10^{-4}}=1.80 \mathrm{MHz}$ $\begin{array}{l\|l} \hline f_{s}= & 1.80 \mathrm{MHz} \\ \hline \end{array}$ If λ_{s} is wrong due to totally wrong A then subtract additional 0.1 from above guidelines for λ_{s}. NOTE: Temp in Exam Hall was $27^{\circ} \mathrm{C}$ for water in Glass Cell under experimental conditions with precaution taken.	Total: 0.5 0.2 Right value of speed of sound (@) the reported T) 0.1 for $f_{s}=\frac{v_{s}}{\lambda_{s}}$ 0.1 for unit $\mathbf{0 . 1}$ for correct answer (full 0.1 for value within 5% of $1.786 \mathrm{MHz} ; 0$ otherwise) Note: Measured value of frequency of the piezoelectric transducers is 1.786 MHz .

\section*{| Country: | Sample Solution | Student Code: | Sample Solution |
| :--- | :--- | :--- | :--- |}

A5. Carry out an error analysis to estimate the uncertainty, Δf_{s}, in the frequency of ultrasonic wave.
Check that small angle is appropriate $\theta \sim \frac{D_{m}}{L} \sim \frac{9.6}{235}$. So the percentage difference between $\tan \theta$ and $\sin \theta$ is $\sim 0.02 \%$.

From equation (10), relative error in λ_{s} can be written as

Alternative

If students get three or more patterns and calculate the standard error using

$$
\text { standard error }=\frac{\sigma}{\sqrt{N-1}}
$$

Total: 1.0

0.8 Expression for $\frac{\Delta f_{s}}{f_{s}}$ everything combined
(0.6 for $\frac{\Delta \lambda_{s}}{\lambda_{s}}$
0.2 for $\frac{\Delta f_{s}}{f_{s}}$ by combining
$\frac{\Delta \lambda_{s}}{\lambda_{s}}$ and $\left.\frac{\Delta v_{s}}{v_{s}}\right)$
0.2 for the right numerical value.
(0.2 : $0.01 \mathrm{MHz}-0.09$ MHz)
(0.1 : (0.005 to <0.01)

MHz and (>0.09 to 0.18)
MHz
0 otherwise
Note: if students just take one pattern but do this detail error analysis, get full 1.0 mark for error analysis if the analysis is done correctly.
Alternative (Max 1.0)
0.4 for the correct expression for the standard error.
0.4 If they do at least 6 times and then go for standard error
(0.2 If they do at least three times and then go for standard error)
0.2 marks for numerical value. (Further penalty as per rules/range specified above)

\section*{| Country: | Sample Solution | Student Code: | Sample Solution |
| :--- | :--- | :--- | :--- |}

Experiment B

B1. Write down the equation for λ_{s}.

$$
\begin{equation*}
\lambda_{s}=\frac{2 p}{m_{B}-1} \tag{12}
\end{equation*}
$$

m_{B} represents the number of fringes counted corresponding to D_{B}.

$$
\begin{aligned}
& M=\frac{D_{B}}{p}=\frac{\left[\frac{\left(S_{1}-f_{L}\right)}{n_{\text {air }}}+\frac{2 g}{n_{g}}+\frac{(a+b)}{n_{w}}+\frac{S_{2}}{n_{\text {air }}}\right]}{\left[\frac{\left(S_{1}-f_{L}\right)}{n_{\text {air }}}+\frac{g}{n_{g}}+\frac{a}{n_{w}}\right]} \\
& \quad \therefore p=D_{B} \frac{\left[\frac{\left(S_{1}-f_{L}\right)}{n_{\text {air }}}+\frac{g}{n_{g}}+\frac{a}{n_{w}}\right]}{\left[\frac{\left(S_{1}-f_{L}\right)}{n_{\text {air }}}+\frac{2 g}{n_{g}}+\frac{(a+b)}{n_{w}}+\frac{S_{2}}{n_{\text {air }}}\right]} \\
& \therefore \lambda_{s}=\frac{2 D_{B}}{\left(m_{B}-1\right)} \frac{\left[\frac{\left(\frac{\left(S_{1}-f_{L}\right)}{n_{\text {air }}}+\frac{g}{n_{g}}+\frac{a}{n_{w}}\right]}{\left[\frac{\left(S_{1}-f_{L}\right)}{n_{\text {air }}}+\frac{2 g}{n_{g}}+\frac{(a+b)}{n_{w}}+\frac{S_{2}}{n_{\text {air }}}\right]}\right.}{} .
\end{aligned}
$$

Total: 1.0

0.2 for using M for getting p
0.8 for equation (12)
-0.8 for missing the factor 2 i.e. for not realizing that for standing wave the spacing between bright/dark spaces is $\lambda_{s} / 2$
-0.2 for using m_{B} instead of $m_{B}-1$ (no deduction if the results show that $m_{B}=$ number of intervals)

Country:	Sample Solution	Student Code:	Sample Solution

B2. Attach this Answer Sheet to the Screen (F) and mark the projected standing wave pattern in the space below.

$\left.\left.\begin{array}{|r|l|l|l|l|}\hline & \text { Pattern 1 } & \text { Pattern 2 } & \text { Pattern 3 } & \\ \hline m_{B}= & 11 & 12 & 22 & \\ \hline D_{B}= & 9.61 & 4.12 & 11.80 & \Delta D_{B}= \pm 0.05 \\ (\mathrm{~cm})\end{array} \right\rvert\, \begin{array}{rl} \\ \begin{array}{r}\text { Temperature } \\ \text { of the }\end{array} & 22 \\ \text { mineral } \\ \text { water } \\ \left({ }^{\circ} \mathrm{C}\right)\end{array}\right)$

> NOTE: Temp in Exam Hall was $27^{\circ} \mathrm{C}$ for water in Glass Cell under experimental conditions with precautions taken.

B3. Measure and record all relevant parameters in the space below

Country:	Sample Solution	Student Code:	Sample Solution

Country:	Sample Solution	Student Code:	Sample Solution

B4. Calculate and record the frequency of ultrasonic waves, f_{s}, in Total $\mathbf{0 . 5}$ mineral water.

Frequency of ultrasound: $\quad f_{s}=\frac{v_{s}}{\lambda_{s}}=\frac{1484}{8.54 \times 10^{-4}}=1.74 \mathrm{MHz}$
$f_{s}=1.74 \mathrm{MHz}$
0.1 for $f_{s}=\frac{v_{s}}{\lambda_{s}}$
0.1 for unit
0.3 for correct answer (full
0.3 for value within 5% of $1.786 \mathrm{MHz} ; 0.2$ for value outside 5% but within 10% of $1.786 \mathrm{MHz} ; 0$ otherwise)

Note: Measured value of frequency of the piezoelectric transducers is 1.786 MHz .

\section*{| Country: | Sample Solution | Student Code: | Sample Solution |
| :--- | :--- | :--- | :--- |}

B5. Carry out an error analysis to estimate the uncertainty, Δf_{s}, in frequency of ultrasonic wave.

$$
\frac{\Delta \lambda_{s}}{\lambda_{s}} \approx \sqrt{\left(\frac{\Delta D_{B}}{D_{B}}\right)^{2}+\left(\frac{\left(\Delta S_{1}\right)^{2}+\left(\frac{\Delta g}{n_{g}}\right)^{2}+\left(\frac{\Delta a}{n_{w}}\right)^{2}}{\left(s_{1}-f_{L}+\frac{g}{n_{g}}+\frac{a}{n_{w}}\right)^{2}}\right)+} \begin{aligned}
& \left(\frac{\left(\Delta S_{1}\right)^{2}+\left(\frac{2 \Delta g}{n_{g}}\right)^{2}+\left(\frac{\Delta(\mathrm{a}+\mathrm{b})}{n_{w}}\right)^{2}+\left(\Delta S_{2}\right)^{2}}{\left(s_{1}-f_{L}+S_{2}+\frac{2 g}{n_{g}}+\frac{a+b}{n_{w}}\right)^{2}}\right)
\end{aligned}
$$

	Pattern 1	Pattern 2	Pattern 3	
$a(\mathrm{~cm})$	5.2	5.5	3.5	$\Delta a=0.1 \mathrm{~cm}$
$a+b(\mathrm{~cm})$	11.16	11.16	12.00	$\Delta(a+b)=0.05$ $c m$
$g(\mathrm{~cm})$	0.5	0.5	0.5	$\Delta g=0.05 \mathrm{~cm}$
$S_{1}(\mathrm{~cm})$	12.7	12.7	20.5	$\Delta S_{1}=0.1 \mathrm{~cm}$
$S_{2}(\mathrm{~cm})$	257.4	92.2	208.5	$\Delta S_{2}=0.5 \mathrm{~cm}$
m_{B}	11	12	22	
$D_{B}(\mathrm{~cm})$	9.61	4.12	11.80	$\Delta D_{B}= \pm 0.05$
M	22.96	8.95	12.66	
$M(\mathrm{~cm})$	0.419	0.46	0.932	
$\lambda_{s}\left(x 10^{-4} \mathrm{~m}\right)$	8.37	8.37	8.88	
$\Delta \lambda_{s} / \lambda_{s}$	0.012	0.016	0.008	

$f_{L}=5.0 \mathrm{~cm}$

$$
\begin{aligned}
& \left(\frac{\Delta \lambda_{s}}{\lambda_{s}}\right)_{\text {mean }}=0.012 \\
& \frac{\Delta f_{s}}{f_{s}}=\sqrt{\left(\frac{\Delta \lambda_{s}}{\lambda_{s}}\right)^{2}+\left(\frac{\Delta v_{s}}{v_{s}}\right)^{2}}=\sqrt{0.012^{2}+\left(\frac{4}{1484}\right)^{2}}=0.012 \\
& \Delta f_{s}= \\
& 0.022 \mathrm{MHz}
\end{aligned}
$$

Total: 1.0

0.8 Expression for $\frac{\Delta f_{s}}{f_{s}}$ everything combined
(0.6 for $\frac{\Delta \lambda_{s}}{\lambda_{s}}$
0.2 for $\frac{\Delta f_{s}}{f_{s}}$ by combining $\frac{\Delta \lambda_{s}}{\lambda_{s}}$ and $\left.\frac{\Delta v_{s}}{v_{s}}\right)$
0.2 for the right numerical value.
(0.2 : $0.01 \mathrm{MHz}-0.09 \mathrm{MHz}$)
(0.1 : (0.005 to <0.01) MHz and (>0.09 to 0.18) MHz 0 otherwise

Note: if students just take one pattern but do this detail error analysis, get full 1.0 mark for error analysis if the analysis is done correctly.

Alternative (Max 1.0)

0.4 for the correct expression for the standard error.
0.4 If they do at least 6 times and then go for standard error
(0.2 If they do at least three times and then go for standard error)
0.2 marks for numerical value. (Further penalty as per rules/range specified above)

Country:	Sample Solution	Student Code:	Sample Solution

Experiment C

C1.	Attach this Answer Sheet to the Screen (F) and mark the observed patterns in the space below. Label each recorded pattern with the corresponding salt concentration. Do not forget to note down the relevant experimental parameters, in Answer Sheet C2 on page 10, needed for calculations.	Total: 1.0 ≥ 5 different Salt Conc. get 1.0 4 Conc. gets 0.8 3 Conc. gets 0.6 2 Conc. get 0.4 1 Conc. gets 0.2 Note - Above numbers exclude 0 concentration pattern which may be obtained from given graph Note - Not penalized for number of fringes

C1. $\begin{aligned} & \text { Attach this Answer Sheet to } \\ & \text { patterns in the space below. }\end{aligned}$
Label each recorded pattern with the corresponding salt concentration. Do not forget to note down the relevant experimental parameters, in Answer Sheet C2 on page 10, needed for calculations.

C1. Attach this Answer Sheet to the Screen (F) and mark the observed cont patterns in the space below.
Label each recorded pattern with the corresponding salt concentration. Do not forget to note down the relevant experimental parameters, in Answer Sheet C2 on page 10, needed for calculations.

\section*{| Country: | Sample Solution | Student Code: | Sample Solution |
| :--- | :--- | :--- | :--- |}

C2. Measure and record all relevant parameters in the table below and calculate the speed of sound, v_{s}, in each of the known salt concentration.

Salt (g) in $1.5 L$ of water $\pm 0.1 \mathrm{~g}$	0.0	80.0	160.0	240.0	320.0	400.0
C_{s} Salt Conc. $\pm 1 \%$	0	0.0506	0.0964	0.138	0.176	0.211
$\begin{array}{r} \text { Temper } \\ \text { ature } \\ \pm 0.5^{\circ} \mathrm{C} \\ \hline \end{array}$	22	22	22	22	22	22
$\begin{aligned} & b(\mathrm{~cm}) \\ & \pm 0.1 \mathrm{~cm} \\ & \hline \end{aligned}$	7.1	6.8	8.4	7.6	7	8.9
L (cm)	375.6	381.8	380.5	371.1	373.5	375.5
$\begin{aligned} & D_{m}(\mathrm{~cm}) \\ & \pm 0.05 \mathrm{~cm} \\ & \hline \end{aligned}$	12.52	11.63	12.86	11.42	11.1	11
m	42	40	46	43	43	43
$\begin{aligned} & \hline \lambda_{S}(m) \\ & \times 10^{-4} \\ & \hline \end{aligned}$	8.24	8.57	8.94	9.15	9.47	9.64
Speed of Sound in salt solution (m/s)	1483	1543	1609	1647	1704	1735

Total : 2.0

1.0 for Salt Conc. Variation

Full 1.0 marks - if the salt conc. Ranges from 0 to 0.2 and above is covered.

Full 0.7 marks - if salt conc. from 0 to (0.1 - <0.2) is covered.

Only 0.4 marks - if salt conc. from 0 to <0.1 is covered.

Note - Data points should spread well with at least three well separated points with difference of at least 50 g per 1.5 liters. If data does not follow above mentioned rule deduct 0.3 marks.

1.0 for value of $\boldsymbol{v}_{\boldsymbol{s}}$

The values of speed of sound is expected to follow the equation

$$
v_{S}=1187 * C_{S}+v_{S T}
$$

Where Cs is Salt Conc and $v_{S T}$ is the speed of sound in mineral water (without salt) at temperature T .
At $22^{\circ} \mathrm{C}$ -
$v_{S T}=1484 \mathrm{~m} / \mathrm{s}$
(0.2 for each value of v_{s} within 5% of

Country:	Sample Solution	Student Code:	Sample Solution

Country:	Sample Solution	Student Code:	Sample Solution

C3	Plot the speed of sound in solution against the salt concentration of the solution.	Total: 1.0 0.2 for Axes Labels 0.1 for Axes Units 0.5 for plotting data points correctly 0.2 for plotting error bars

Country:	Sample Solution	Student Code:	Sample Solution

Country:	Sample Solution	Student Code:	Sample Solution

C5.	Determine the salt concentration in the unknown solution.		Total :0.2 0.2 for correct value of concentration
	Concentration of Salt in Unknown Solution =	0.19 ± 0.01	
	NOTE: The unkno	Wn solution has 225 g of	(0.2 for value within 5% of expected value)
	salt dissolved per on $C_{s}=0.184$	ne liter of mineral water i.e.	(0.1 for value outside 5\% but within 10% of expected value)
			(0 otherwise)
			-0.1 uncertainty missing

\section*{| Country: | Sample Solution | Student Code: | Sample Solution |
| :--- | :--- | :--- | :--- |}

Experiment D:

D1. Draw a labeled sketch of the experiment you have designed for calculation of the refractive index of the corn-syrup. Use the space below relevant parameters needed and calculate the refractive index of the corn-syrup.

$$
\begin{aligned}
& \frac{n_{\text {corn-syrup }}}{n_{\text {air }}}=\frac{\sin \theta_{i}}{\sin \theta_{r}}=\frac{O_{i}}{O_{r}} \frac{H_{r}}{H_{i}} \\
& \frac{n_{\text {corn-syrup }}}{n_{\text {air }}}=\frac{\sin 22.04}{\sin 15.25}=1.42
\end{aligned}
$$

Assuming glass can be ignored.

Total: 1.5
0.5 for appropriate and properly labeled diagram
0.5 for correct expressions related to the setup used
0.5 for calculation
(full 0.5 for value between 1.38-1.48)
(0.3 for value between $1.34-1.38$ or between $1.48-1.55$)
0 for outside above mentioned range

Country:	Sample Solution	Student Code:	Sample Solution

D2. Attach this Answer Sheet to the Screen (F) and mark diffraction patterns in the space below for corn-syrup.
Note down the temperature of the corn-syrup and all other relevant experimental parameters needed to calculate the speed of sound in this solution.

Corn Syrup

$b(\mathrm{~cm})$ $\pm 0.1 \mathrm{~cm}$	$L(\mathrm{~cm})$ $\pm 0.1 \mathrm{~cm}$	$D(\mathrm{~cm})$ $\pm 0.05 \mathrm{~cm}$	m	$\lambda_{s}(\mathrm{~m})$ $\times 10^{-4}$	Speed of Sound $(\mathrm{m} / \mathrm{s})$
8.9	360	1.85	9	10.47	1885

Total: 1.0

0.4 for pattern
0.4 for tabulation of relevant parameters.
0.2 calculation of v_{s} in corn syrup
(0.2 for each value of v_{s} within 5% of expected value)
(0.1 for each value of v_{s} outside 5% but within 10% of expected value)
(0 otherwise)

