

Question 2

The two-slit electron interference experiment was first performed by Möllenstedt *et al*, Merli-Missiroli and Pozzi in 1974 and Tonomura *et al* in 1989. In the two-slit electron interference experiment, a monochromatic electron point source emits particles at *S* that first passes through an electron "biprism" before impinging on an observational plane; S_1 and S_2 are virtual sources at distance *d*. In the diagram, the filament is pointing into the page. Note that it is a very thin filament (not drawn to scale in the diagram).

The electron "biprism" consists of a grounded cylindrical wire mesh with a fine filament *F* at the center. The distance between the source and the "biprism" is ℓ , and the distance between the distance between is *L*.

- (a) (2 points) Taking the center of the circular cross section of the filament as the origin O, find the electric potential at any point (x,z) very near the filament in terms of V_a , a and b where V_a is the electric potential of the surface of the filament, a is the radius of the filament and b is the distance between the center of the filament and the cylindrical wire mesh. (Ignore mirror charges.)
- (b) (4 points) An incoming electron plane wave with wave vector k_z is deflected by the "biprism" due to the *x*-component of the force exerted on the electron. Determine k_x the *x*-component of the wave vector due to the "biprism" in terms of the electron charge, e, v_z , V_a , k_z , a and b, where e and v_z are the charge and the *z*-component of the velocity of the electrons ($k_x \ll k_z$). Note that $\vec{k} = \frac{2\pi\vec{p}}{h}$ where h is the Planck constant.
- (c) Before the point *S*, electrons are emitted from a field emission tip and accelerated through a potential V_0 . Determine the wavelength of the electron in terms of the (rest) mass *m*, charge *e* and V_0 ,
 - (i) (2 points) assuming relativistic effects can be ignored, and
 - (ii) (**3 points**) taking relativistic effects into consideration.
- (d) In Tonomura *et al* experiment,

= c/2, v_z V_a = 10 V, $V_0 = 50 \, \text{kV},$ а $= 0.5 \,\mu m$, b $= 5 \, \text{mm},$ ℓ = 25 cm,L $= 1.5 \,\mathrm{m},$ $= 6.6 \times 10^{-34} \text{ Js},$ h electron charge, $e = 1.6 \times 10^{-19} \text{ C}$, mass of electron, $m_0 = 9.1 \times 10^{-31} \text{ kg}$, and the speed of light *in vacuo*, $c = 3 \times 10^8 \text{ ms}^{-1}$

- (i) (2 points) calculate the value of k_x ,
- (ii) (2 **points**) determine the fringe separation of the interference pattern on the screen,
- (iii) (**1 point**) If the electron wave is a spherical wave instead of a plane wave, is the fringe spacing larger, the same or smaller than the fringe spacing calculated in (ii)?
- (iv) (2 points) In part (c), determine the percentage error in the wavelength of the electron using non-relativistic approximation.
- (v) (2 points) the distance *d* between the apparent double slits.